The reduction of vibration properties for composite material (woven roving E-glass fiber plies in thermosetting polyester matrix) is investigated at the prediction time under varied combined temperatures (60 to -15) using three types of boundary conditions like (CFCF, CCCF, and CFCC). The vibration properties are the amplitude, natural frequency, dynamic elastic moduli (young modulus in x, y directions and shear modulus in 1, 2 plane) and damping factor. The natural frequency of a system is a function of its elastic properties, dimensions, and mass. The woven roving glass fiber has been especially engineered for polymer reinforcement; but the unsaturated thermosetting polyester is widely used, offering a good balance of vibration properties at moderate or ambient temperatures, and also at relatively low cost. The mismatch between matrix and fiber yarns gives a predominant role for the fiber's mechanics where the matrix is the area where most damage mechanisms develop. The free vibration test was carried out for (5, 10, 15, 20, 25, 30) minutes. The composite plate was exposed to (75) of thermal gradient for ten times in various times at different stages. The results were classified into experimental and finite element using software ANSYS Ver. 9.
Background/Aim: Endometrial abnormalities represent a diagnostic challenge due to overlapping imaging features with normal endometrium. Aim of this study was to assess accuracy of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging (MRI) in evaluation of endometrial lesions in comparison with T2 and to assess local staging validity and degree of myometrial invasion in malignancy. Methods: Forty patients with abnormal vaginal bleeding or sonographic thickened endometrial were recruited. MRI examination of pelvis was per-formed using 1.5 T scanner with a pelvic array coil. Conventional T1-and T2, dynamic contrast-enhanced (DCE) sequences and diffusion-weighted image (DWI) were performed. Results: Mean age of pa
... Show MoreIn this work, a single pile is physically modeled and embedded in an upper liquefiable loose sand layer overlying a non-liquefiable dense layer. A laminar soil container is adopted to simulate the coupled static-dynamic loading pile response during earthquake motions: Ali Algharbi, Halabjah, El-Centro, and Kobe earthquakes. During seismic events with combined loading, the rotation along the pile, the lateral and vertical displacements at the pile head as well as the pore pressure ratio in loose sandy soil were assessed. According to the experimental findings, combined loading that ranged from 50 to 100% of axial load would alter the pile reaction by reducing the pile head peak ground acceleration, rotation of the pile, and lateral displacem
... Show MoreAt present, the ability to promote national economy by adjusting to political, economic, and technological variables is one of the largest challenges faced by organization productivity. This challenge prompts changes in structure and line productivity, given that cash has not been invested. Thus, the management searches for investment opportunities that have achieved the optimum value of the annual increases in total output value of the production line workers in the laboratory. Therefore, the application of dynamic programming model is adopted in this study by addressing the division of investment expenditures to cope with market-dumping policy and to strive non-stop production at work.
In this work a chemical sensor was built by using Plane Wave Expansion (PWE) modeling technique by filling the core of 1550 hollow core photonic crystal fiber with chloroform that has different concentrations after being diluted with distilled water. The minimum photonic bandgap width is.0003 and .0005 rad/sec with 19 and 7 cells respectively and a concentration of chloroform that filled these two fibers is 75%.
The microbend sensor is designed to experience a light loss when force is applied to the sensor. The periodic microbends cause propagating light to couple into higher order modes, the existing higher order modes become unguided modes. Three models of deform cells are fabricated at (3, 5, 8) mm pitchand tested by using MMF and laser source at 850 nm. The maximum output power of (8, 5, 3)mm model is (3, 2.7, 2.55)nW respectively at applied force 5N and the minimum value is (1.9, 1.65, 1.5)nW respectively at 60N.The strain is calculated at different microbend cells ,and the best sensitivity of this sensor for cell 8mm is equal to 0.6nW/N.
Hollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fibe
... Show MoreA total of 589 fishes, belonging to 23 species were collected from eight different localities
in north and mid Iraq during 1993. The parasitological inspection of such fishes revealed the
presence of 59 parasite species and two fungi. Among such parasites, five monogenetic
trematodes were recorded on the gills of some fishes for the first time in Iraq. These
included:- Ancyrocephalus vanbenedenii on Liza abu from Tigris river at Al-Zaafaraniya,
south of Baghdad; Dactylogyrus anchoratus on Cyprinus carpio from Tigris river at Al –
Zaafaranya D. minutus on C. carpio from both Tigris river at Al-Zaafaraniya and Euphrates
river at Al-Qadisiya dam lake; Discocotyle sagittata on L. abu from both the drainage system
at