Preferred Language
Articles
/
alkej-554
Modeling and Filtering for Tracking Maneuvering Targets
...Show More Authors

     A new mathematical model describing the motion of manned maneuvering targets is presented. This model is simple to be implemented and closely represents the motion of maneuvering targets. The target maneuver or acceleration is correlated in time. Optimal Kalman filter is used as a tracking filter which results in effective tracker that prevents the loss of track or filter divergency that often occurs with conventional tracking filter when the target performs a moderate or heavy maneuver. Computer simulation studies show that the proposed tracker provides sufficient accuracy.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jan 04 2018
Journal Name
International Journal Of Molecular Sciences
Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets
...Show More Authors

View Publication
Scopus (38)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Wed Nov 21 2018
Journal Name
International Journal Of Control, Automation And Systems
Design and Stability Analysis of a Fractional Order State Feedback Controller for Trajectory Tracking of a Differential Drive Robot
...Show More Authors

View Publication
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Iraqi Geological Journal
Reservoir modeling for mishrif formation in Nasiriyah oilfield
...Show More Authors

Scopus (4)
Scopus
Publication Date
Tue Oct 19 2021
Journal Name
International Journal Of Online And Biomedical Engineering (ijoe)
Object Tracking Using Adaptive Diffusion Flow Active Model
...Show More Authors

Object tracking is one of the most important topics in the fields of image processing and computer vision. Object tracking is the process of finding interesting moving objects and following them from frame to frame. In this research, Active models–based object tracking algorithm is introduced. Active models are curves placed in an image domain and can evolve to segment the object of interest. Adaptive Diffusion Flow Active Model (ADFAM) is one the most famous types of Active Models. It overcomes the drawbacks of all previous versions of the Active Models specially the leakage problem, noise sensitivity, and long narrow hols or concavities. The ADFAM is well known for its very good capabilities in the segmentation process. In this

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Al-kindy College Medical Journal
A Role of Therapy that Targets Immune Checkpoint Proteins for the Treatment of Melanoma Brain Metastasis, Liver, Breast, Pancreatic Cancer and Pancreatic Adenocarcinoma
...Show More Authors

Checkpoint inhibitors are a type of immune therapy used to treat different types of cancers. These drugs block different checkpoint proteins, for example, CTLA-4, PD-1, and PD-L1 inhibitors.

They block proteins that stop the immune system from attacking the cancer cells.  Checkpoints are also described as a type of monoclonal antibody that antagonizes binding between B7 to CTLA-4 and PD-L1 to PD-1.

 Immune checkpoint inhibitors are used to treat BARCA mutated triple-negative breast cancer (TNBCS) in patients who do not respond to chemotherapy, and also in the treatment of highly mutated and solid tumors such as brain tumors, liver, and pancreatic cancers.

Immune checkpoint inhibitors exhibit an effect on solid tumo

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Genetic Algorithm Based PID Controller Design for a Precise Tracking of Two-Axis Piezoelectric Micropositioning Stage
...Show More Authors

 In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Fri Aug 05 2016
Journal Name
Wireless Communications And Mobile Computing
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati

... Show More
View Publication
Scopus (31)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Advances In Mechanical Engineering
Using a spherical inverted pendulum and statokinesigram for modeling and evaluating quiet standing posture
...Show More Authors

This paper proposes a new approach to model and analyze erect posture, based on a spherical inverted pendulum which is used to mimic the body posture. The pendulum oscillates in two directions, [Formula: see text] and [Formula: see text], from which the mathematical model was derived and two torque components in oscillation directions were introduced. They are estimated using stabilometric data acquired by a foot pressure mapping system. The model was quantitatively investigated using data from 19 participants, who were first were classified into three groups, according to the foot arch-index. Stabilometric data were then collected and fed into the model to estimate the torque’s components. The components were statistically proce

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref