Finding a path solution in a dynamic environment represents a challenge for the robotics researchers, furthermore, it is the main issue for autonomous robots and manipulators since nowadays the world is looking forward to this challenge. The collision free path for robot in an environment with moving obstacles such as different objects, humans, animals or other robots is considered as an actual problem that needs to be solved. In addition, the local minima and sharp edges are the most common problems in all path planning algorithms. The main objective of this work is to overcome these problems by demonstrating the robot path planning and obstacle avoidance using D star (D*) algorithm based on Particle Swarm Optimization (PSO) technique. Moreover, this work focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains. Since the environment type that discussed here is a known dynamic environment, the solution approach can be off-line. The main advantage of the off-line planning is that a global optimal path solution is always obtained, which is able to overcome all the difficulties caused by the dynamic behavior of the obstacles. A mixing approach of robot path planning using the heuristic method D* algorithm based on optimization technique is used. The heuristic D* method is chosen for finding the shortest path. Furthermore, to insure the path length optimality and for enhancing the final path, PSO technique has been utilized. The robot type has been used here is the two-link robot arm which represents a more difficult case than the mobile robot. Simulation results are given to show the effectiveness of the proposed method which clearly shows a completely safe and short path.
Nowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreThis research deals with the effect of constructive conflict of the organizational identification .These relatively recent subjects have relative importance in the field of administration and they have strong effect in the success of organizations .The objective of this research is to detect the level of the constructive conflict and the organizational identification in the center of The Ministry of Planning. So, two major hypotheses were formulated The first are searched the correlation between the constructive conflict and the organizational identification and it emerged with four sub-hypotheses searched the correlation among every dimension of the constructive conflict with the organizational identification .The second major h
... Show MoreThe aim of this research to study.
The dimensions of organizational learning have been defined(learning dynamics, individuals empowerment, knowledge management and technology application) as well as the dimensions of learning organization have been defined (culture values, knowledge transfer, communication and employee characteristics), Asset completion questionnaire was used to collect data of this research from a purposely sample represent forty employees who works in Iraqi Planning Ministry at different positions. The research divided to four parts :
The first to the research methodology, the second to the theoretical review o
... Show MoreAbstract
This research aims to reform the Iraqi public budget through going into the challenges the budget faces in applying item-line budget in its preparation, implementation and control; which encourage extravagance and waste instead of rationalizing expenditures. This is shown in the data analysis of Federal public budget laws in Iraq for the years from 2005 till 2013; there was a continuous increase in the aggregate public expenditures in the public budget for the years previously mentioned, as the public expenditures growth has reached into the percent 284.71% in 2013. In addition the public budget for these years (2005-2013) is being prepared with planned deficit without confirming that
... Show MoreVisible Light Communication (VLC) has emerged as a powerful technique for wireless communication systems. Providing high data rate and increasing capacity are the major problems in VLC. Recent evidence suggests that Multiple Input Multiple Output (MIMO) technique can offers improved data rates and increased link range. This paper describes the design and implementation of visible light communication system in indoor environment exploring the benefits of MIMO. The specific objective of this research was to implement a 4× 4 Multiple Input (LEDs) Multiple Output (photodetectors)-VLC communication system, where a 16 white power LEDs in four arrays are setting up at transmitter and four RX modules are setting up at receiver side without the nee
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show MoreThis paper presents the motion programming and control of omni-directional mobile robot through the process of building and programming a small robotic platform with secondary design criteria of modularity and simplified control. This is accomplished by combining the positive aspects of several different robotics platform ideas. The platform is shaped like an equilateral triangle with a servo motor, sensors, and omni-wheel, controlled by a PIC microcontroller.
In this work the kinematics, inverse kinematics and dynamic module for the platform is derived. Two search algorithms (the wall-following search and the “most-open-area” search) is designed, tested, and analyzed experimentally.
An indoor spraying robot is built in this research to solve numerous challenges associated with manual spraying. The mechanical, hardware and essential technologies used are all detailed and designed. The proposed spraying robot's conceptual design is split into two parts: hardware and software. The mechanical design, manufacturing, electrical, and electronics systems are described in the hardware part, while the control of the robot is described in the software section. This robot's kinematic and dynamic models were developed using three links that move in the x, y, and z directions. The robot was then designed using SolidWorks software to compute each connection's deflection and maximum stresses. The characteristics of the stepper moto
... Show More