Mechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight ratio was 5%, the maximum Young’s modulus, yield stress and ultimate tensile stress occurred in the polyester with date seeds. The results of tensile and flexural tests showed that the natural composite material has a higher strength than the industrial material. While the results of flexural tests manifested that the maximum improvement in the flexural strength is obtained for orange peels at 5 wt. %, where the maximum increasing percentage is 153.4% than pure polyester. The thermal conductivity of orange peels decreased to the half value when the weight ratio increased from 10% to 15%. The thermal conductivity for polyester with orange peels was greater than the thermal conductivity of polyester with date seeds with maximum percentage occurred at weight ratio 10% is 14.4%, but the thermal conductivity of the industrial composite material was higher than the natural composite material. Finally, the date seeds composite was a good insulator and it had a reduced heat transfer rate in comparison to the rest of the samples, also the maximum variation of temperature with time occurred in date seeds composite.
The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is
... Show MoreWater has a great self-generating capacity that can neutralize the polluting interventions carried out by humans. However, if human activities continue this uncontrolled and unsustainable exploitation of this resource, this regenerating capacity shall fail and it will be jeopardized definitively. Shatt Al-Arab River in South of Iraq. It has an active role in providing water for irrigation, industry, domestic use and a commercial gateway to Iraq. in the last five years Shatt Al-Arab suffered from a rise in pollutants due to the severe decline in sewage networks, irregular networks and pesticide products, as well as the outputs of factories and companies that find their way to water sources and lead to a widespread collapse of water quality.
... Show MoreThe study aims to investigate the effect of Al2O3 and Al additions to Nickel-base superalloys as a coating layer on oxidation resistance, and structural behavior of nickel superalloys such as IN 738 LC. Nickel-base superalloys are popular as base materials for hot components in industrial gas turbines such as blades due to their superior mechanical performance and high-temperature oxidation resistance, but the combustion gases' existence generates hot oxidation at high temperatures for long durations of time, resulting in corrosion of turbine blades which lead to massive economic losses. Turbine blades used in Iraqi electrical gas power stations require costly maintenance using traditional processes regularly. These blades are made
... Show MoreThe peristaltic transport of power-law fluid in an elastic tapered tube with variable cross-section induced by dilating peristaltic wave is studied. The exact solution of the expression for axial velocity, radial velocity, stream function, local shear stress, volume of flow rate and pressure gradient are obtained under the assumption of long wavelength and low Reynolds number. The effects of all parameters that appear in the problem are analyzed through graphs. The results showed that the flux is sinusoidal in nature and it is an increasing function with the increase of whereas it is a decreasing function with the increase of . An opposite behavior for shear strain is noticed compared to pressure gradient. Finally, trapping p
... Show More