The field of structural optimization (optimal design) has grown rapidly over the past decades with many different optimization methods that could be used to produce a structure of minimum weight. This research deals with two aspects, in the first, a general numerical technique based on the finite element analysis and it suggests to investigate the preliminary behavior of metal stiffened plate under action of static load environment. The technique was included a finite element model of the structures using high- order isoparimetric plate elements to be used to create a certain models to obtain their optimum design. The models are characterized such that, each model is builded using different types of stiffener configuration. The second aspect was concerned with the investigation of the optimum design configuration of the structures. The optimization techniques used is called Morphing Evolutionary Structural Optimization (MESO). The Morphing ESO was examined in this research to be applied on stiffened plate structures. The Morphing ESO is based on the simple concept that by slowly removing efficient material from a structure, the residual shape evolves in the direction of making the structure better. The mathematical representation of this method is accomplished in this thesis with full programming and modification required being applicable to a new structure with a new condition. Where the thickness of the plate and stiffeners, and the stiffener height are the design variable. While the objective of the optimization is the structure weight and inequality constraints are the maximum Von Misses stress required for each structure.
In this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
A computerized investigation has been carried out on the design of six electrodes electrostatic lenses used in electron gun application. The Finite-Element Method (FEM) was used in the solution of Laplace equation for determine the axial potential distribution. The electron trajectory under zero magnification condition. The optical properties, spherical and chromatic aberrations, the object and image focal length and object and image position are calculated. A very good futures for the electron gun with these lenses have been computed where are a beam current of 8.7*10-7A can be supplied using cathode tip of radius 10nm.
As a result of the development and global openness and the possibility of companies providing their services outside their spatial boundaries that were determined by them, and the transformation of the world due to the development of the means of communication into a large global market that accommodates all products from different regions and of the same type and production field, competition resulted between companies, and the race to obtain the largest market share It ensures the largest amount of profits, and it is natural for the advertising promotion by companies for their product to shift from an advertisement for one product to a competitive advertisement that calls on the recipient to leave the competing product and switch to it
... Show MoreThe idea of the design of combination Between split – plot and split block means that an experiment conducted with a design
formed by combination Between split – plot and split block, and it presents a precise manner to analytic who aimed to make appropriate statistical analysis for the experiment because such design contains four random errors , it make a high precision rather than another designs. The plan and the theoretical analysis were presented with application to show its idia and the ability to use it in many fields especially in agricultural experiments field .
Flexible joint robot (FJR) manipulators can offer many attractive features over rigid manipulators, including light weight, safe operation, and high power efficiency. However, the tracking control of the FJR is challenging due to its inherent problems, such as underactuation, coupling, nonlinearities, uncertainties, and unknown external disturbances. In this article, a terminal sliding mode control (TSMC) is proposed for the FJR system to guarantee the finite-time convergence of the systems output, and to achieve the total robustness against the lumped disturbance and estimation error. By using two coordinate transformations, the FJR dynamics is turned into a canonical form. A cascaded finite-time sliding mode observer (CFTSMO) is construct
... Show MoreThis study analyzes how to make use of the resources in the marshlands of Iraq and how to utilize them, especially after the water returns to these areas and they are revitalized. We take an example of AL- Saheen Marsh and plan an ideal tourist resort there. This example can further expand to include other parts of the marshlands. The resort will utilize the local environment and tourist characteristics as it will have a feel and architectural resemblance to the houses and buildings that are currently built there. In addition the transportation methods will be the same as those used by the locals. Yet the resort will still posses all the facilities required by a modern tourist resort that includes all the services that will make
... Show MoreThis paper presents L1-adaptive controller for controlling uncertain parameters and time-varying unknown parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of L1-adaptive controller for position control of studied servomotor has been examined and compared with another adaptive controller; Model Reference Adaptive Controller (MRAC). Robustness of both L1-adaptive controller and model reference adaptive controller to different input reference signals and different structures of uncertainty were studied. Three different types of input signals are taken into account; ramp, step and sinusoidal. The L1-adaptive controller ensured uniformly bounded
... Show MoreA Mini-TEA CO2 laser system was designed and operated to obtain a pulse at 10.6 μm. Output energy of 30 mJ, with preionization pins, and pulse duration of 100ns were obtained. While an output energy of 6mJ and pulse duration of 100 ns in absence of pre-ionization were obtained. The system was operated with Ernest profile main-discharge electrodes. Dependencies of supply voltage and output laser energy on the pressure inside laser cavity were investigated as well as dependencies of supply voltage and output energy on the main capacitor(8CO2 : 8N2 : 82He :2CO). Efficiency of was calculated to be 4.4%.