This study presents the debonding propagation in single NiTi wire shape memory alloy into linear low-density polyethylene matrix composite the study of using the pull-out test. The aim of this study is to investigate the pull-out tests to check the interfacial strength of the polymer composite in two cases, with activation NiTinol wire and without activation. In this study, shape memory alloy NiTinol wire 2 mm diameter and linear fully annealed straight shape were used. The study involved experimental and finite element analysis and eventually comparison between them. This pull-out test is considered a substantial test because its results have a relation with behavior of smart composite materials. The pull-out test was carried out by a universal tensile test machine type (Laryee), load capacity (50 kN), and a test speed of 1mm/min. The finite elements modeling was performed by ANSYS V.15. The results of pull-out test showed that in the activation of NiTinol wire embedded in host matrix linear low-density polyethylene (LLDPE), the deboned force was about 74 N, but for the case without activation, it was about 106 N. Deboned shear stress for the case with activation was about 0.73 MPa, but for the case of without activation, it was about 1.05 MPa. ANSYS result for deboned shear stress in case with activation was about 0.8 MPa. As for the case of without activation, deboned shear stress was about 0.99 MPa. The activation of the ratio of deboned shear stress and deboned force decreased by 30.47% and 30.13%, respectively. The error ratio between experimental and ANSYS results was equal to 8% for the case with activation and 5.7% for the case without activation.
The measurements of major and trace elements in different brands of milk powder selected from the Iraqis market via the X-ray fluorescence (XRF) Technique have been studied in the present work. The result of the measurements reveals the high concentrations of sodium, phosphorus, sulfur, chlorine, potassium, calcium and magnesium. Furthermore, low concentrations of aluminum, silicon, iron, bromine, molybdenum, iodine, barium, titanium, manganese, cobalt, chrome, nickel, copper, zinc and lead were detected. Neutron activation analysis (NAA) and Kjeldahl technique were also employed to determine the concentrations of nitrogen. It was found that the nitrogen concentration was in the range of (1.96 - 3.23) % which is within the permissible li
... Show MoreThis paper is dealing with an experimental study to show the influence of the geometric characteristics of the vortex generators VG son the thickness of the boundary layer (∂) and drag coefficients (CD) of the flat plate. Vortex generators work effectively on medium and high angles of attack, since they are "hidden" under the boundary layer and practically ineffective at low angles.
The height of VGs relative to the thickness of the boundary layer enables us to study the efficacy of VGs in delaying boundary layer separation. The distance between two VGs also has an effect on the boundary layer if we take into
... Show MoreThis study was conducted to determine the effects of concentration of hydrochloric acids, temperature, and time on the hydrolysis of soya proteins (defatted soya flour) by determining the value of total protein nitrogen concentration, and amino nitrogen concentration of protein, peptides, and amino acids, and then calculated the hydrolysis rate of proteins.
The variables of the conditions of hydrolysis process was achieved in this study with the following range value of tests parameter:
- Concentration of HCl solution ranged between 1-7 N,
- Hydrolysis temperature ranged between 35-95 °C, and
- The time of hydroly
The aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show MoreAbstract
This paper represents a study of the effect of the soil type, the drilling parameters and the drilling tool properties on the dynamic vibrational behavior of the drilling rig and its assessment in the drilling system. So first, an experimental drilling rig was designed and constructed to embrace the numerical work.
The experimental work included implementation of the drill-string in different types of soil with different properties according to the difference in the grains size, at different rotational speeds (RPM), and different weights on bit (WOB) (Thrust force), in a way that allows establishing the charts that correlate the vibration acceleration, the rate of penetration (ROP), and the power
... Show MoreThrough the early childhood and after the ablactating the child learns acquired food habbits that might studying with him throughout his life. Here the parents role arises: teaching the child the sound food habits and hygienic styles and whatever beneficial to the health and with the sufficient quantities for the body. In this way the experiences the child learns at home will be of great help in his future life in choosing the suitable food after becoming more dependent in making his decisions and choices away from his parents. The results in this study showed that the averages of the children’s consumption of the high energy foods in comparison with the other highest consumption average , after that comes the con sumption of soft drills
... Show MoreThe modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var
... Show MorePyrolysis of high density polyethylene (HDPE) was carried out in a 750 cm3 stainless steel autoclave reactor, with temperature ranging from 470 to 495° C and reaction times up to 90 minute. The influence of the operating conditions on the component yields was studied. It was found that the optimum cracking condition for HDPE that maximized the oil yield to 70 wt. % was 480°C and 20 minutes. The results show that for higher cracking temperature, and longer reaction times there was higher production of gas and coke. Furthermore, higher temperature increases the aromatics and produce lighter oil with lower viscosity.
To observe the effect of media of the internal pressure on the equivalent stress distribution in the tube, an experimental study is done by constructing a testing rig to apply the hydraulic pressure and three dies are manufactured with different bulging configurations (square, cosine, and conical). In the other part, ANSYS APDL is generated to analyze the bulging process with hydraulic and rubber (natural and industrial) media. It was found that when the media is a rubber, the stress is decreased about 9.068% in case of cosine die and 5.4439% in case of conical die and 2.8544% in case of square die. So, it can be concluded that the internal pressure in the rubber media is much better than in hydraulic media. Also, the force needed for fo
... Show MoreThis study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed