Preferred Language
Articles
/
alkej-522
Multidimensional Systolic Arrays of LMS Algorithm Adaptive (FIR) Digital Filters
...Show More Authors

A multidimensional systolic arrays realization of LMS algorithm by a method of mapping regular algorithm onto processor array, are designed. They are based on appropriately selected 1-D systolic array filter that depends on the inner product sum systolic implementation. Various arrays may be derived that exhibit a regular arrangement of the cells (processors) and local interconnection pattern, which are important for VLSI implementation. It reduces latency time and increases the throughput rate in comparison to classical 1-D systolic arrays. The 3-D multilayered array consists of 2-D layers, which are connected with each other only by edges. Such arrays for LMS-based adaptive (FIR) filter may be opposed the fundamental requirements of fast convergence rate in most adaptive filter applications.       

                                                                                                              

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Study of Performance of Air Filters in Public Shelters
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Digital Image Authentication Algorithm Based on Fragile Invisible Watermark and MD-5 Function in the DWT Domain
...Show More Authors

Using watermarking techniques and digital signatures can better solve the problems of digital images transmitted on the Internet like forgery, tampering, altering, etc. In this paper we proposed invisible fragile watermark and MD-5 based algorithm for digital image authenticating and tampers detecting in the Discrete Wavelet Transform DWT domain. The digital image is decomposed using 2-level DWT and the middle and high frequency sub-bands are used for watermark and digital signature embedding. The authentication data are embedded in number of the coefficients of these sub-bands according to the adaptive threshold based on the watermark length and the coefficients of each DWT level. These sub-bands are used because they a

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
Arab Journal Of Basic And Applied Sciences
Analytic and numerical solutions for linear and nonlinear multidimensional wave equations
...Show More Authors

View Publication
Crossref (9)
Crossref
Publication Date
Mon Jun 30 2008
Journal Name
Iraqi Journal Of Science
On the Greedy Ridge Function Neural Networks for Approximation Multidimensional Functions
...Show More Authors

The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).

Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Advanced Computer Science And Applications
Proposed an Adaptive Bitrate Algorithm based on Measuring Bandwidth and Video Buffer Occupancy for Providing Smoothly Video Streaming
...Show More Authors

View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Fri Mar 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Performance of Dual-Media Down-Flow Rapid Gravity Filters
...Show More Authors

The present study was conducted to evaluate the effect of variation of influent raw water turbidity, bed composition, and filtration rate on the performance of mono (sand) and dual media (sand and anthracite) rapid gravity filters in response to the effluent filtered water turbidity and headloss development. In order to evaluate each filter pe1formance, sieve analysis was made to characterize both media and to determine the effective size and uniformity coefficient. Effluent filtered water turbidity and the headloss development was recorded with time during each experiment.

View Publication Preview PDF
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (8)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2024
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimation of a Circular Regression Model on Peak Systolic Blood Pressure Data
...Show More Authors

Purpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement. Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both. Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. Findings: The Mean Circular Erro

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jun 01 2007
Journal Name
Journal Of Al-nahrain University Science
ON THE GREEDY RADIAL BASIS FUNCTION NEURAL NETWORKS FOR APPROXIMATION MULTIDIMENSIONAL FUNCTIONS
...Show More Authors

The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Comparison of the RLS and LMS Algorithms to Remove Power Line Interference Noise from ECG Signal
...Show More Authors

    Biomedical signal such as ECG is extremely important in the diagnosis of patients and is commonly recorded with a noise. Many different kinds of noise exist in biomedical environment such as Power Line Interference Noise (PLIN). Adaptive filtering is selected to contend with these defects, the adaptive filters can adjust the filter coefficient with the given filter order. The objectives of this paper are: first an application of the Least Mean Square (LMS) algorithm, Second is an application of the Recursive Least Square (RLS) algorithm to remove the PLIN. The LMS and RLS algorithms of the adaptive filter were proposed to adapt the filter order and the filter coefficients simultaneously, the performance of existing LMS

... Show More
View Publication Preview PDF