Preferred Language
Articles
/
alkej-514
Evaluation of Mechanical Properties of Particulate Composites
...Show More Authors

A series of experiments have been taken out to test the validity of the effect of Aluminum hydrate on its interaction with Aluminum during sintering of aluminum metal matrix. The approach has been shown to be valid and several compositions have been fabricated. The alumina hydrate particle size and the amount of alumina hydrate in the composites are also shown to have an influence on the extent of densification.

The densities for all sintered specimens were measured. It was found that density increases as compaction pressure increases, the density decreases as particles size increases. At 400 MPa there is an optimum particles size which is (90-125) µm to reach maximum density and the density decreases as volume fraction increases from 2% to 20%. 

The microstructure enhances as compaction pressure increases, agglomeration of alumina hydrate particles increases with increasing of volume fraction and cavities increases especially at low compaction pressure more than at high compaction pressure.

 The mechanical properties (compression test and Vickers hardness) of sintered specimens compacted at 100 MPa accomplished for three volume fractions 2%, 10% and 20% and three particles size (45-90) µm, (90-125) µm and (125-150) µm. Young's modulus in compression decreases as volume fraction increases. Also it decreases as particles size increases and Vickers hardness decreases as volume fraction increases. Also decreases as particles size increases.                                                                             

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Nov 26 2018
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Different Percentages of Natural (Orange Peels and Date Seeds) and Industrial Materials (Carbon and Silica) on the Mechanical and Thermal Properties of Polymeric Reinforced Composites
...Show More Authors

Mechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 11 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties for PVA- PEG-MnCl2 composites
...Show More Authors

Polymer films of PEG and PVA and their blend with different
concentrations of MnCl2 (0, 2, 4, 6 and 10 %.wt) were study using
casting technique. The X-ray spectra of pure PEG, PVA and
PVA:PEG films and with addition of 2% concentrations from
(MnCl2) show amorphous structures. The results for FTIR show the
interaction between the filler and polymer blend results in
decreasing crystallinity with rich amorphous phase. This
amorphous nature confirms the complexation between the filler and
the polymer blend. The optical properties of (PVA:PEG/MnCl2)
contain the recording of absorbance (A) and explain that the
absorption coefficient (α), refractive index (n), extinction coefficient
(ko) and the dielectric cons

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Optical properties for prepared polyaniline / Ferro fluid nano composites
...Show More Authors

Pure nano Ferro fluid was synthesized by chemical co-precipitation method. The composite of polyaniline with nano sized Ferro fluid was prepared by In-situ–chemical oxidation polymerization method with ammonium per sulphate as an oxidant in aqueous hydrochloric acid under constant stirring at room temperature. The optical properties, absorption, transmission, optical energy gap (Eg) and optical constant refractive index (n) have been investigated. The value of the Eg decreased with increasing Ferro fluid concentration.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jan 08 2019
Journal Name
Iraqi Journal Of Physics
Effect of UV radiation on dielectric properties of PU/nano-TiO2 composites
...Show More Authors

The dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Effect Of Additive Al On the Optical Properties Of Polystyrene-Aluminum Composites
...Show More Authors

 Additive aluminum powder to the polystyrene to prepare the composites Polystyrene– Aluminum.The samples were prepared by using mechanical  compressed method at low pressure and a temperature 120°C.         Measurements  of absorbance and reflectance spectra were carried out by UV-Visible  spectrophotometer , the effect of additive aluminum  on the optical band  gap Eop and  optical constants ( refractive index n, extinction coefficient k ,dielectric constant ε and optical conductivity σop)  were studied for the prepared composites .         Results showed a decrease in the Eop with increasing  perc

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Enhancement of self-healing to mechanical properties of concrete
...Show More Authors
Abstract<p>Concrete is the main construction material of many structures. Exposing to loads creates cracks in concrete, which reduce the performance and durability. The decrease of concrete cracks becomes a necessity demand to ensure more durability and structural integrity of the concrete structure. Autogenous healing concrete is a kind of new smart concretes, which has the ability to reclose its cracks by means of itself. Concrete self-healing is a type of free repairs processes, which is reduce direct and indirect cost of maintenance and repairing. This work targets to inspect the mechanical properties of concrete after using two combinations of two materials (20 kg/m3 calcium hydroxide Ca(OH</p> ... Show More
Crossref (1)
Clarivate Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Physics
Electrical Properties of PAN/PMMA Blends Doped with Lithium Salts
...Show More Authors

         Polymer blended electrolytes of various concentrations of undoped PAN/PMMA (80/20, 75/25, 70/30, 65/35 and 60/40 wt%) and doped with lithium salts (LiCl, Li2SO4H2O, LiNO3, Li2CO3) at 20% wt have been prepared by the solution casting method using dimethylformamide as a solvent. The electrical conductivity has been carried out using an LCR meter. The results showed that the highest ionic conductivity was 2.80x10-7 (Ω.cm)-1 and 1.05x10-1 (Ω.cm)-1 at 100 kHz frequency at room temperature for undoped (60% PAN + 40% PMMA) and (80% PAN + 20% PMMA) doped with 20%wt Li2CO3 composite blends, respect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Baghdad Science Journal
Physical Properties of Cu Doped ZnO Nanocrystiline Thin Films
...Show More Authors

Thin films of ZnO nano crystalline doped with different concentrations (0, 6, 9, 12, and 18 )wt. % of copper were deposited on a glass substrate via pulsed laser deposition method (PLD). The properties of ZnO: Cu thin-nanofilms have been studied by absorbing UV-VIS, X-ray diffraction (XRD) and atomic force microscopes (AFM). UV-VIS spectroscopy was used to determine the type and value of the optical energy gap, while X-ray diffraction was used to examine the structure and determine the size of the crystals.  Atomic force microscopes were used to study the surface formation of precipitated materials. The UV-VIS spectroscopy was used to determine the type and value of the optical energy gap.

View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Electrical and dielectric properties of kevlar - carbon hybrid fiber / epoxy laminated composites
...Show More Authors

This paper reports a.c., d.c. conductivity and dielectric behavior of Ep-hybrid composite with12 Vol.% Kevlar-Carbon hybrid . D.C. conductivity measurements are conducted on the graded composites by using an electrometer over the temperature range from (293-413) K. It was shown then that conductivity increases by increasing number of Kevlar –Carbon fiber layers (Ep1, Ep2, Ep3), due to the high electrical conductivity of Carbon fiber. To identify the mechanism governing the conduction, the activation energies at low temperature region (LTR) and at high temperature region (HTR) have been calculated. The activation energy values for hybrid composite decrease with increasing number of fiber layers. The a.c. conductivity was measured over fr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advanced Composites Letters
Enhanced thermal and electrical properties of epoxy/carbon fiber–silicon carbide composites
...Show More Authors

The silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low a

... Show More
View Publication
Scopus (28)
Crossref (36)
Scopus Clarivate Crossref