Preferred Language
Articles
/
alkej-514
Evaluation of Mechanical Properties of Particulate Composites

A series of experiments have been taken out to test the validity of the effect of Aluminum hydrate on its interaction with Aluminum during sintering of aluminum metal matrix. The approach has been shown to be valid and several compositions have been fabricated. The alumina hydrate particle size and the amount of alumina hydrate in the composites are also shown to have an influence on the extent of densification.

The densities for all sintered specimens were measured. It was found that density increases as compaction pressure increases, the density decreases as particles size increases. At 400 MPa there is an optimum particles size which is (90-125) µm to reach maximum density and the density decreases as volume fraction increases from 2% to 20%. 

The microstructure enhances as compaction pressure increases, agglomeration of alumina hydrate particles increases with increasing of volume fraction and cavities increases especially at low compaction pressure more than at high compaction pressure.

 The mechanical properties (compression test and Vickers hardness) of sintered specimens compacted at 100 MPa accomplished for three volume fractions 2%, 10% and 20% and three particles size (45-90) µm, (90-125) µm and (125-150) µm. Young's modulus in compression decreases as volume fraction increases. Also it decreases as particles size increases and Vickers hardness decreases as volume fraction increases. Also decreases as particles size increases.                                                                             

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Mechanical Properties of High Performance Concrete Containing Waste Plastic as Aggregate

         The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Mechanical Properties Of AA 6061-T6 Aluminum Alloy Friction Stir Welds

The different parameters  on  mechanical  and  microstructural  properties  of  aluminium  alloy  6061-T6 Friction  stir-welded  (FSW) joints  were investigated in the  present study. Different welded  specimens were produced by employing variable rotating  speeds and welding speeds. Tensile strength of the produced joints  was tested at room  temperature and the the effecincy was assessed, it was 75% of the base metal at rotational speed 1500 rpm and weld speed 50 mm/min. Hardness of various zones of FSW welds are presented and  analyzed by  means of  brinell hardness number . Besides to thess tests the bending properties  investigat

... Show More
View Publication Preview PDF
Publication Date
Fri Jul 02 2021
Journal Name
Iraqi Journal Of Science
UV-Exposure effect on the mechanical properties of PEO/PVA blends

 

     Poly ethylene oxide PEO / Poly vinyl alcohol PVA  blends were prepared by cast method at different ratios of (25%PEO/75%PVA, 30%PEO/70%PVA, 35%PEO/65%PVA, 40%PEO/60%PVA, and 50%PEO/505PVA). Samples miscibility ,and thermal stability were studied  by using differential scanning calorimetry(DSC),and thermo gravimetric analysis (TGA) analysis. The results proved that there was one glass transition temperature (Tg=160°C) at 25%PEO\PVA ratio
)that was attributed to its miscibility. This miscibility associated with (Hydrogen  bonds) between (Hydroxyl group) in PVA, and PEO, whereas there were two glass transition temperature for the blends ratio more than 30%PEO,that was due its immisc

... Show More
Crossref (8)
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 01 2018
Journal Name
Materials Science-poland
Thermal and electrical properties of polyimide/PANI nanofiber composites prepared via in situ polymerization
Abstract<p> Polyimide/polyaniline nanofiber composites were prepared by in situ polymerization with various weight percentages of polyaniline (PANI) nanofibers. X-ray diffraction (XRD) and Fourier transform infrared spectra (FT-IR), proved the successful preparation of PANI nanofiber composite films. In addition, thermal stability of PI/PANI nanofiber composites was superior relative to PI, having 10 % gravimetric loss in the range of 623 °C to 671 °C and glass transition temperature of 289 °C to 297 °C. Furthermore, the values of the loss tangent tanδ and AC conductivity σAC of the nanocomposite films were notably higher than those of pure polyimide. The addition of 5 wt.% to 15 wt.% PANI</p> ... Show More
Scopus (34)
Crossref (31)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 13 2019
Journal Name
Iraqi Journal Of Physics
Preparation and studying of some properties of polymer composites reinforced with natural and artificial fibers

This work concerns the thermal and sound insulation as well as the mechanical properties of polymer matrix composite reinforced with glass fibers. These fibers may have dangerous effect during handling, for example the glass fibers might cause some damage to the eyes, lungs and even skin. For this reason the present work, investigates the behavior of polymer composite reinforced with natural fibers (Plant fibers) as replacement to glass fibers. Unsaturated Polyester resin was used as matrix material reinforced with two types of fibers, one of them is artificial (Glass fibers) and the other type is natural (Jute, Fronds Palm and Reed Fibers) by hand lay-up technique. All fibers are untreated with any chemical solvent. The Percentage of mi

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
International Journal Of Medical Research & Health Sciences
Effect of Silver-Zinc Zeolite Addition on Mechanical Properties of Maxillofacial Silicone

Background: Deterioration of maxillofacial silicone properties due to microbial colonization is a common problem and leads to the replacement of the prosthesis. Incorporation of the antimicrobial agent into the silicone could be a solution. The purpose of this study was to evaluate the effect of silver-zinc zeolite addition on some mechanical properties of a maxillofacial silicone (VST-50). Materials and methods: Total 120 specimens were fabricated and divided into 3 groups: 40 specimens for tear strength test, 40 specimens for tensile and percentage of elongation tests and 40 specimens for Shore A hardness and surface roughness. Each group was divided into 4 subgroups according to the amount of zeolite added (0% “control”, 0.5%, 1% and

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
Effect of Alkali - Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete
Abstract<p>As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via exp</p> ... Show More
Crossref (10)
Crossref
View Publication
Publication Date
Mon Mar 01 2021
Journal Name
Iraqi Journal Of Physics
Investigation of Structural, Mechanical, Thermal and Optical Properties of Cu Doped TiO2

In this work, Pure and Cu: doped titanium dioxide nano-powder was prepared through a solid-state method. the dopant concentration [Cu/TiO2 in atomic percentage (wt%)] is derived from 0 to 7 wt.%. structural properties of the samples performed with XRD revealed all nanopowders are of titanium dioxide having polycrystalline nature. Physical and Morphological studies were conducted using a scanning electronic microscope SEM test instrument to confirm the grain size and texture. The other properties of samples were examined using an optical microscope, Lee's Disc, Shore D hardness instrument, Fourier-transform infrared spectroscopy (FTIR), and Energy-dispersive X-ray spectroscopy (EDX). Results showed that the thermal conductivity

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Civil And Environmental Engineering
Effect of Alkali - Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete

As an alternative to Ordinary Portland Cement (OPC), the alkali-activated binders have been developed with better technical characteristics and more extended durability. The Alkali-Activated Iraqi Natural Pozzolans (AANP) could produce geopolymer cementation building materials and make them ecologically acceptable. The primary advantage of geopolymer cement is that it has a lower environmental effect that contributes to it. The engineering characteristics of geopolymer concrete produced using activated Iraqi natural Pozzolan are summarized in this research. The mechanical properties, modulus of elasticity, and ultrasonic pulse velocity of various concrete mixes were determined via experimental study. The impact of essential variables like w

... Show More
Scopus (9)
Crossref (10)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
Studying of Some Mechanical Properties of Reactive Powder Concrete Using Local Materials

This research aims to investigate and evaluate a reactive powder concrete (RPC) cast using economical materials. Its mechanical properties were investigated and evaluated by studying the effects of using different cement and silica fume contents and locally steel fibers aspect ratios as reinforcement for this concrete. A compressive strength of about 155.2MPa, indirect tensile strength of 16.0MPa, modulus of elasticity of 48.7GPa, flexural strength of 43.5MPa, impact energy of 3294.4kN.m and abrasion loss 0.59%  have been achieved for reinforced RPC contains  910 kg/m3 cement content, silica fume content 185 kg/m3 of cement weight and fiber volume fraction 2%. The water absorption values w

... Show More
View Publication Preview PDF