Preferred Language
Articles
/
alkej-511
Finite Element Based Solution of Laplace's Equation Applied to Electrical Activity of the Human Body
...Show More Authors

Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.

The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.

Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.

This work describes the implementation of the Conjugate Gradient iterative method for the solution of large linear equation systems resulting from the finite element method. A diagonal Jacobi preconditioner is used in order to accelerate the convergence. Gaussian elimination is also implemented and compared with the Precondition Conjugate Gradient (PCG) method and with the iterative method. Different types of matrix storage schemes are implemented such as the Compressed Sparse Row (CSR) to achieve better performance. In order to demonstrate the validity of the finite element analysis, the technique is adopted to solve Laplace's equation that describes the electrical activity of the human body with Dirichlet and Neumann boundary conditions. An automatic mesh generator is built using C++ programming language.  Initially a complete finite element program is built to solve Laplace's equation. The same accuracy is obtained using these methods. The results show that the CSR format reduces computation time compared to the order format. The PCG method is better for the solution of large linear system (sparse matrices) than the Gaussian Elimination and back substitution method, while Gaussian elimination is better than iterative method.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams With and Without Opening
...Show More Authors

This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Simulation of Temperature Distribution in TIG Spot Welds of (Al-Mg) Alloy Using Finite Element Method
...Show More Authors

      This research concern to analyse and simulate the temperature distribution in the spot welding joints using tungsten arc welding shielded with inert gas (TIG Spot) for the aluminum-magnesium alloy type  (5052-O).

      The effect of and the quantity of the heat input that enter the weld zone has been investigated welding current, welding time and arc length on temperature distribution. The finite element method (by utilizing programme ANSYS 5.4) is presented  the temperature distribution in a circular weld pool and the weld pool penetration (depth of welding) through the top sheet ,across the interface into the lower sheet forming a weld spot.   &nbs

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
Archive Of Mechanical Engineering
Using the Lid-Driven Cavity Flow to Validate Moment-Based Boundary Conditions for the Lattice Boltzmann Equation
...Show More Authors
Abstract<p>The accuracy of the Moment Method for imposing no-slip boundary conditions in the lattice Boltzmann algorithm is investigated numerically using lid-driven cavity flow. Boundary conditions are imposed directly upon the hydrodynamic moments of the lattice Boltzmann equations, rather than the distribution functions, to ensure the constraints are satisfied precisely at grid points. Both single and multiple relaxation time models are applied. The results are in excellent agreement with data obtained from state-of-the-art numerical methods and are shown to converge with second order accuracy in grid spacing.</p>
View Publication
Scopus (20)
Crossref (17)
Scopus Crossref
Publication Date
Sun Feb 02 2025
Journal Name
Engineering, Technology &amp; Applied Science Research
A Numerical Study of Concrete Composite Circular Columns encased with GFRP I-Section using the Finite Element Method
...Show More Authors

This paper presents ABAQUS simulations of fully encased composite columns, aiming to examine the behavior of a composite column system under different load conditions, namely concentric, eccentric with 25 mm eccentricity, and flexural loading. The numerical results are validated with the experimental results obtained for columns subjected to static loads. A new loading condition with a 50 mm eccentricity is simulated to obtain additional data points for constructing the interaction diagram of load-moment curves, in an attempt to investigate the load-moment behavior for a reference column with a steel I-section and a column with a GFRP I-section. The result comparison shows that the experimental data align closely with the simulation

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Dec 06 2011
Journal Name
Journal Of Planner And Development
Human Resources Investment as an Introduction to improve the efficiency & activity of workers in E – Government
...Show More Authors

The human resources are considered to be the main pillar of the organizations , economic development and the foundation of moving wheels of individual growth. This is considered as the basic tasks for any productive and economic activity . The investment of the human resources is the economic pillar of production , but the most important element of the production . This research tried to access the method of resource investment and to identify the problems and training as key element in establishment of E –government . A questionnaire document have been distributed to the workers at different levels in the colleges and institutes. The research concluded the necessity of job description , continuous training of the workers , usi

... Show More
View Publication Preview PDF
Publication Date
Sat Aug 25 2018
Journal Name
Water
Minimizing the Principle Stresses of Powerhoused Rock-Fill Dams Using Control Turbine Running Units: Application of Finite Element Method
...Show More Authors

This study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse

... Show More
View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Computers &amp; Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

View Publication
Crossref (20)
Crossref
Publication Date
Mon Jun 22 2020
Journal Name
Baghdad Science Journal
Splitting the One-Dimensional Wave Equation. Part I: Solving by Finite-Difference Method and Separation Variables
...Show More Authors

In this study, an unknown force function dependent on the space in the wave equation is investigated. Numerically wave equation splitting in two parts, part one using the finite-difference method (FDM). Part two using separating variables method. This is the continuation and changing technique for solving inverse problem part in (1,2). Instead, the boundary element method (BEM) in (1,2), the finite-difference method (FDM) has applied. Boundary data are in the role of overdetermination data. The second part of the problem is inverse and ill-posed, since small errors in the extra boundary data cause errors in the force solution. Zeroth order of Tikhonov regularization, and several parameters of regularization are employed to decrease error

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Approximation Solution of Fuzzy Singular Volterra Integral Equation by Non-Polynomial Spline
...Show More Authors

A non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
...Show More Authors

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Clarivate Crossref