An experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the relation between surface roughness with operation parameters have been achieved.
Based on the density functional theory (DFT) , the stability of molecular complexes has been predicted according to hard-soft acid base (HSAB) theory. Relative stability of products and reactivity of soft base sulfide derivatives with halogens (Iodine , Bromine , Chlorine) as soft acid was studied to determine the relative ability of these reactants causing the reaction to be more spontaneous.
DFT at the levels of B3LYP/3-21G and B3LYP/3-21G (d) was used to study HOMO LUMO energy gaps , bonds length and total energy to calculate the softness sequence of each type of acid or base mentioned in this work. All cases studied prove that iodine can be considered as the most softness acid and ethyl methyl sulfide≈ dimethyl sulfide the most
In this paper, a computer simulation is implemented to generate of an optical aberration by means of Zernike polynomials. Defocus, astigmatism, coma, and spherical Zernike aberrations were simulated in a subroutine using MATLAB function and applied as a phase error in the aperture function of an imaging system. The studying demonstrated that the Point Spread Function (PSF) and Modulation Transfer Function (MTF) have been affected by these optical aberrations. Areas under MTF for different radii of the aperture of imaging system have been computed to assess the quality and efficiency of optical imaging systems. Phase conjugation of these types aberration has been utilized in order to correct a distorted wavefront. The results showed that
... Show MoreThe subject of the Internet of Things is very important, especially at present, which is why it has attracted the attention of researchers and scientists due to its importance in human life. Through it, a person can do several things easily, accurately, and in an organized manner. The research addressed important topics, the most important of which are the concept of the Internet of Things, the history of its emergence and development, the reasons for its interest and importance, and its most prominent advantages and characteristics. The research sheds light on the structure of the Internet of Things, its structural components, and its most important components. The research dealt with the most important search engines in the Intern
... Show MoreSteganography is a useful technique that helps in securing data in communication using different data carriers like audio, video, image and text. The most popular type of steganography is image steganography. It mostly uses least significant bit (LSB) technique to hide the data but the probability of detecting the hidden data using this technique is high. RGB is a color model which uses LSB to hide the data in three color channels, where each pixel is represented by three bytes to indicate the intensity of red, green and blue in that pixel. In this paper, steganography based RGB image is proposed which depends on genetic algorithm (GA). GA is used to generate random key that represents the best ordering of secret (image/text) blocks to b
... Show MoreCompressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreEye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.
Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More