An experimental study was carried out to improve the surface roughness quality of the stainless steel 420 using magnetic abrasive finishing method (MAF). Four independent operation parameters were studied (working gap, coil current, feed rate, and table stroke), and their effects on the MAF process were introduced. A rotating coil electromagnet was designed and implemented to use with plane surfaces. The magnetic abrasive powder used was formed from 33%Fe and 67% Quartz of (250µm mesh size). The lubricant type SAE 20W was used as a binder for the powder contents. Taguchi method was used for designing the experiments and the optimal values of the selected parameters were found. An empirical equation representing the relation between surface roughness with operation parameters have been achieved.
In this work the strain energy of tetrahedrane and its nitrogen substituted molecules were calculated by isodesmic reaction method according to DFT quantum chemical fashion, the used basis set was 6-31G/B3-LYP, in addition all structures were optimized by RM1 semi-empirical method. From the obtained data we estimate an empirical equation connect between strain energy of the molecule with charge functions represented by dipole moment of the molecule plus accumulated charge density involved within the tetrahedron frame plus the number of nitrogen atoms. The results indicate the charge spreading factors by polarization and processes are the most important factors in decreasing the strain energy.
Nanotechnology has shown a lot of promise in the oil and gas sectors, including nanoparticle-based drilling fluids. This paper aims to explore and assess the influence of various nanoparticles on the performance of drilling fluids to make the drilling operation smooth, cost effective and efficient. In order to achieve this aim, we exam the effect of Multi Wall Carbon Nanotube and Silicon Oxide Nanoparticles as Nanomaterial to prepare drilling fluids samples.
Anew method for mixing of drilling fluids samples using Ultra sonic path principle will be explained. Our result was drilling fluids with nano materials have high degree of stability.
The results of using Multiwall Carbon Nanotube and Silicon Oxide show t
... Show MoreThe planning, designing, construction of excavations and foundations in soft to very soft clay soils are always difficult. They are problematic soil that caused trouble for the structures built on them because of the low shear strength, high water content, and high compressibility. This work investigates the geotechnical behavior of soft clay by using tyre ash material burnt in air. The investigation contains the following tests: physical tests, chemical tests, consolidation test, Compaction tests, shear test, California Bearing Ratio test CBR, and model tests. These tests were done on soil samples prepared from soft clay soil; tyre ash was used in four percentages (2, 4, 6, and 8%). The results of the tests were; The soil samples which
... Show MoreThe frequent and widespread use of medicines and personal care products, particularly in the residential environment, tends to raise concerns about environmental and human health impacts. On the other hand, carbon dioxide accumulation in the atmosphere is a problem with numerous environmental consequences. Microalgae are being used to bioremediate toxins and capture CO2. The current study aimed to confirm the possibility of removing pharmaceutical contaminant (Ranitidine) at different concentrations by using the Chlorella Sorokiniana MH923013 microalgae strain during the growth time. As part of the experiment, carbon dioxide was added to the culture medium three times per week. Explanatory results revealed that gas doses directly affect
... Show MoreIraq has a huge network of pipelines, transport crude oil and final hydrocarbon products as well as portable water. These networks are exposed to extensive damage due to the underground corrosion processes unless suitable protection techniques are used. In this paper we collect the information of cathodic protection for pipeline in practical fields (Oil Group in Al Doura), to obtain data base to understand and optimize the design which is made by simulation for the environmental factors and cathodic protection variables also soil resistivity using wenner four terminal methods for survey sites; and soil pH investigations were recorded for these selected fields were within 7-8, and recording the anodes voltage and its related currents for
... Show MoreRadioactive liquid waste contaminated with cesium-137 found in the radiochemistry laboratories at Tuwaitha site, south of Baghdad, was treated in this work. Bentonite was used as a sorbent material for the removal of radioactive cesium-137 from liquid waste by ion exchange method. The results indicated that the best removal efficiency obtained was 95.13% with experimental conditions of 2 h mixture time, 0.04 g sorbent mass, and pH=10 for the radioactive liquid. It was found that the experimental results match well with Langmuir and Freundlich models, with better matching with the latter.
The traditional technique of generating MPSK signals is basically to use IQ modulator that involves analog processing like multiplication and addition where inaccuracies may exist and would lead to imbalance problems that affects the output modulated signal and hence the overall performance of the system. In this paper, a simple method is presented for generating the MPSK using logic circuits that basically generated M-carrier signals each carrier of different equally spaced phase shift. Then these carriers are time multiplexed, according to the data symbols, into the output modulated signal.
The aim of this work is to study reverse osmosis characteristics for copper sulfate hexahydrate (CuSO4.6H2O), nickel sulfate hexahydrate (NiSO4.6H2O) and zinc sulfate hexahydrate (ZnSO4.6H2O) removal from aqueous solution which discharge from some Iraqi factories such as Alnasser Company for mechanical industries. The mode of operation of reverse osmosis was permeate is removed and the concentrate of metals solution is recycled back to the feed vessel. Spiral-wound membrane is thin film composite membrane (TFC) was used to conduct this study on reverse osmosis. The variables studied are metals concentrations (50 – 150 ppm) and time (15 – 90 min). It was found that increasing the time results in an increase in concentration of metal in p
... Show More