This study describes how fuzzy logic control FLC can be applied to sonars of mobile robot. The fuzzy logic approach has effects on the navigation of mobile robots in a partially known environment that are used in different industrial and society applications. The fuzzy logic provides a mechanism for combining sensor data from all sonar sensors which present different information. The FLC approach is achieved by means of Fuzzy Decision Making method type of fuzzy logic controller. The proposed controller is responsible for the obstacle avoidance of the mobile robot while traveling through a map from a home point to a goal point. The FLC is built as a subprogram based on the intelligent architecture (IA). The software program uses the Advanced Robotics Interface for Applications (ARIA), it is programmed with C++ package ( Visual C++.Net ), and Networking software is used for setup Wireless TCP/IP Ethernet-to-Serial connection between robot and PC. The results show that the developed mobile robot travels successfully from one location to another and reaches its goal after avoiding all obstacles that are located in its way. The platform mobile robot is a Pioneer 3 DX that is equipped with Sonar sensors.
In this work the design and application of a fuzzy logic controller to DC-servomotor is investigated. The proposed strategy is intended to improve the performance of the original control system by use of a fuzzy logic controller (FLC) as the motor load changes. Computer simulation demonstrates that FLC is effective in position control of a DC-servomotor comparing with conventional one.
The main problem when dealing with fuzzy data variables is that it cannot be formed by a model that represents the data through the method of Fuzzy Least Squares Estimator (FLSE) which gives false estimates of the invalidity of the method in the case of the existence of the problem of multicollinearity. To overcome this problem, the Fuzzy Bridge Regression Estimator (FBRE) Method was relied upon to estimate a fuzzy linear regression model by triangular fuzzy numbers. Moreover, the detection of the problem of multicollinearity in the fuzzy data can be done by using Variance Inflation Factor when the inputs variable of the model crisp, output variable, and parameters are fuzzed. The results were compared usin
... Show MoreThe concept of a small f- subm was presented in a previous study. This work introduced a concept of a hollow f- module, where a module is said to be hollow fuzzy when every subm of it is a small f- subm. Some new types of hollow modules are provided namely, Loc- hollow f- modules as a strength of the hollow module, where every Loc- hollow f- module is a hollow module, but the converse is not true. Many properties and characterizations of these concepts are proved, also the relationship between all these types is researched. Many important results that explain this relationship are demonstrated also several characterizations and properties related to these concepts are given.
<p><span>This research deals with the feasibility of a mobile robot to navigate and discover its location at unknown environments, and then constructing maps of these navigated environments for future usage. In this work, we proposed a modified Extended Kalman Filter- Simultaneous Localization and Mapping (EKF-SLAM) technique which was implemented for different unknown environments containing a different number of landmarks. Then, the detectable landmarks will play an important role in controlling the overall navigation process and EKF-SLAM technique’s performance. MATLAB simulation results of the EKF-SLAM technique come with better performance as compared with an odometry approach performance in terms of measuring the
... Show MoreThe advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages
... Show MoreWriting in English is one of the essential factors for successful EFL learning .Iraqi students at the preparatory schools encounter problems when using their background knowledge in handling subskills of writing(Burhan,2013:164).Therefore, this study aims to investigate the 4thyear preparatory school students’ problems in English composition writing, and find solutions to these pro
... Show More