The Esterification kinetics of acetic acid with ethanol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 50-60°C and at a different molar ratio of ethanol to acetic acid [EtOH/Ac]. Investigation of kinetics of the reaction indicated that the low of [EtOH/Ac] molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 80% was obtained at 60°C for molar ratio of 10 EtOH/Ac. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. Activity coefficients were calculated using UNIFAC program. Results showed deviation in activation energy in the non-ideal system of about 20% this is due to the polarities of water and ethanol compared to the non-polar ethyl acetate this dissimilarity leading to strong non- ideal behavior. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated form the kinetic model in agreement with the measured chemical equilibrium.
The catalytic wet air oxidation (CWAO) of phenol has been studied in a trickle bed reactor
using active carbon prepared from date stones as catalyst by ferric and zinc chloride activation (FAC and ZAC). The activated carbons were characterized by measuring their surface area and adsorption capacity besides conventional properties, and then checked for CWAO using a trickle bed reactor operating at different conditions (i.e. pH, gas flow rate, LHSV, temperature and oxygen partial pressure). The results showed that the active carbon (FAC and ZAC), without any active metal supported, gives the highest phenol conversion. The reaction network proposed account
... Show MoreThe esterification of oleic acid with 2-ethylhexanol in presence of sulfuric acid as homogeneous catalyst was investigated in this work to produce 2-ethylhexyl oleate (biodiesel) by using semi batch reactive distillation. The effect of reaction temperature (100 to 130°C), 2-ethylhexanol:oleic acid molar ratio (1:1 to 1:3) and catalysts concentration (0.2 to 1wt%) were studied. Higher conversion of 97% was achieved with operating conditions of reaction temperature of 130°C, molar ratio of free fatty acid to alcohol of 1:2 and catalyst concentration of 1wt%. A simulation was adopted from basic principles of the reactive distillation using MATLAB to describe the process. Good agreement was achieved.
EM International
Through the researchers' acquaintance with the previous studies, the problem was identified as that the preparation of training curricula in all its units must be based on accurate scientific foundations. Positively affect the type of attack and its implication in the presence of correlational relations, whether direct or indirect, i.e., precedence in training and in preparing units Therefore, the researcher decided to build a causal model to know the relationships to show the best model of the direct straight attack. The study aimed to build a causal model for the most important physical measurements and kinetic capabilities of the direct straight attack in the research sample. The two researchers used the descriptive approach in t
... Show MoreIn this study, Yogurt was dried and milled, then shaked with distilled water to remove the soluble materials, then again dried and milled. Batch experiments were carried out to remove hexavalent chromium from aqueous solutions. Different parameters were optimized such as amount of adsorbent, treatment time, pH and concentration of adsorbate. The concentrations of Cr6+ in solutions are determined by UV-Visible spectrophotometer. Maximum percentage removal of Cr6+ was 82% at pH 2. Two equilibrium adsorption isotherms mechanisms are tested Langmuir and Freundlich, the results showed that the isotherm obeyed to Freundlich isotherm. Kinetic models were applied to the adsorption of Cr6+ ions on the adsorbents, ps
... Show MoreThis work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.
The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the
... Show MoreThe new, standard molecular biologic system for duplicating DNA enzymatically devoid of employing a living organism, like E. coli or yeast, represents polymerases chain reaction (PCR). This technology allows an exponential intensification of a minor quantity of DNA molecule several times. Analysis can be straightforward with more DNA available. A thermal heat cycler performs a polymerization chain reaction that involves repeated cycles of heating and cooling the reactant tubes at the desired temperature for each reaction step. A heated deck is positioned on the upper reaction tube to avoid evaporating the reaction mixture (normally volumes range from 15 to 100 l per tube), or an oil layer can be placed on a reaction mixture su
... Show MoreIn this paper, we focused on the investigated and studied the cold fusion reaction rate for D-D using the theory of Bose-Einstein condensation and depending on the quantum mechanics consideration. The quantum theory was based on the concept of single conventional of deuterons in Nickel-metal due to Bose-Einstein condensation, it has supplied a consistent description and explained of the experimental data. The analysis theory model has capable of explaining the physical behaviour of deuteron induced nuclear reactions in Nickel metals upon the five-star matter, it's the most expected for a quantitative predicted of the physical theory. Based on the Bose-Einstein condensation theorem formulation, we calculation the cold fusion reaction rate fo
... Show MoreCoffee is the most essential drink today, aside from water, the high consumption of coffee and the byproducts of its soluble industries such as spent coffee grounds can have a negative effect on the environment as a source of toxic organic compounds. Therefore, caffeine removal from the spent coffee ground can be applied as a method to limit the effect of its production on the environment. The aim of this study is to determine the kinetics and thermodynamics parameters and develop models for both processes based on the process parameters by using traditional solid-liquid extraction and Ultrasound-assisted extraction methods. The processes were performed at a temperature range of 25 to 55 °C for traditional and ultrasound baths, and
... Show More