Preferred Language
Articles
/
alkej-47
Nahrain Mobile Learning System (NMLS)
...Show More Authors

The work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other through forums, SMS and e-mails. NMLS platform is based on 3G mobile phone technology and adopted WAP as a solution for the system platform. The NMLS framework is based on three layers, which are presentation layer, business logic layer and data layer. 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Organizational Tactics An Approach to Strategic Agility A field study in a sample of mobile operators in Iraq
...Show More Authors

The current research dealt with the issue of organizational skillfulness as an entry point to reach strategic agility. The study has been tested in Iraq's mobile operators - Asia Cell, Zain Iraq and Cork Telecom. The study was applied to a sample of (93) managers distributed at various levels of management (board members, general managers, commissioners, department managers, people managers, unit managers, office managers). The survey used the questionnaire as a key tool for collecting data and information as well as personal interviews. It has sought to test a number of hypotheses related to correlation and influence relationships between the variables of the study, in order to answer the questions related to the problem of stud

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
Journal Of Network And Computer Applications
L-CAQ: Joint link-oriented channel-availability and channel-quality based channel selection for mobile cognitive radio networks
...Show More Authors

View Publication
Scopus (16)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Al-nahrain University Science
Breaking Knapsack Cipher Using Population Based Incremental Learning
...Show More Authors

View Publication
Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Al-mustansiriyah Journal Of Science
A Transfer Learning Approach for Arabic Image Captions
...Show More Authors

Publication Date
Sun Nov 14 2021
Journal Name
Palarch's Journal Of Archaeology Of Egypt/egyptology
Blended Learning in Teaching English to University Students
...Show More Authors

QJ Rashid, IH Abdul-Abbas, MR Younus, PalArch's Journal of Archaeology of Egypt/Egyptology, 2021 - Cited by 4

View Publication
Publication Date
Sun Jan 31 2016
Journal Name
International Journal Of Research In Humanities, Arts, And Literature
THE PROBLEMS FACING IRAQI CHILDREN IN LEARNING ENGLISH
...Show More Authors

DBN Rashid, IMPAT: International Journal of Research in Humanities, Arts, and Literature, 2016 - Cited by 5

View Publication
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Engineering
Iraqi Sentiment and Emotion Analysis Using Deep Learning
...Show More Authors

Analyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Lecture Notes On Data Engineering And Communications Technologies
Utilizing Deep Learning Technique for Arabic Image Captioning
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Fri Mar 18 2022
Journal Name
Aro-the Scientific Journal Of Koya University
Detecting Deepfakes with Deep Learning and Gabor Filters
...Show More Authors

The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue

... Show More
View Publication
Scopus (11)
Crossref (4)
Scopus Clarivate Crossref