Preferred Language
Articles
/
alkej-470
A Finite Element Analysis for the Damaged Rotating Composite Blade

In this paper, the finite element method is used to study the dynamic behavior of the damaged rotating composite blade. Three dimensional, finite element programs were developed using a nine node laminated shell as a discretization element for the blade structure (the same element type is used for damaged and non-damaged structure). In this analysis the initial stress effect (geometric stiffness) and other rotational effects except the carioles acceleration effect are included.  The investigation covers the effect speed of rotation, aspect ratio, skew angle, pre-twist angle, radius to length, layer lamination and fiber orientation of composite blade. After modeling a non-damaged rotating composite blade, the work procedure was to apply different damage cases in reference to the non-damaged structure in order to compute the shift in the fundamental natural frequency and stresses. Damage occurs in several layers of the composite sheet in different locations throughout its volume, and through several layers of the sheet. The numerical results show a good agreement compared with the available investigations using other methods.

 

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of RCMD Beams with Large Circular Opening Strengthened with CFRP Material

This paper presents the non-linear finite element method to study the behavior of four reinforced rectangular concrete MD beams with web circular openings tested under two-point load. The numerical finite elements methods have been used in a much more practical way to achieve approximate solutions for more complex problems.  The ABAQUS /CAE is chosen to explore the behavior of MD beams. This paper also studies, the effect of both size and shape of the circular apertures of MD beams. The strengthening technique that used in this paper is externally strengthening using CFRP around the opening in the MD beams. The numerical results were compared to the experimental results in terms of ultimate load failure and displace

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Finite Element Analysis of Reinforced Concrete T-Beams with Multiple Web Openings under Impact Loading

In this study, a three-dimensional finite element analysis using ANSYS 12.1 program had been employed to simulate simply supported reinforced concrete (RC) T-beams with multiple web circular openings subjected to an impact loading. Three design parameters were considered, including size, location and number of the web openings. Twelve models of simply supported RC T-beams were subjected to one point of transient (impact) loading at mid span. Beams were simulated and analysis results were obtained in terms of mid span deflection-time histories and compared with the results of the solid reference one. The maximum mid span deflection is an important index for evaluating damage levels of the RC beams subjected to impact loading. Three experi

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Engineering
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams With and Without Opening

This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Engineering
Publication Date
Sat Dec 30 2023
Journal Name
Journal Of Economics And Administrative Sciences
The Cluster Analysis by Using Nonparametric Cubic B-Spline Modeling for Longitudinal Data

Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.

In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.

The longitudinal balanced data profile was compiled into subgroup

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Oct 24 2018
Journal Name
Journal Of Planner And Development
View Publication Preview PDF
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental & Theoretical Analysis of Composite (Polyester & Silicon-Carbide) Cantilever Beam

A cantilever beam is made from composite material which is consist of (matrix: polyester) and (particles: Silicon-Carbide) with different volume fraction of particles. A force is applied at the free end of beam with different values. The experimental maximum deflection of beam which occurs at the point of the applied load is recorded. The deflection and slope of beam are analyzed by using FEM modeling. MATLAB paltform is built to assemble the equations, vector and matrix of FEM and solving the unknown variables (deflection and slope) at each node. Also ANSYS platform is used to modeling beam in finite element and solve the problem. The numerical methods are used to compare the results with the theoretical and experimental data. A good ag

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 16 2021
Journal Name
2021 4th International Conference On Energy Conservation And Efficiency (icece)
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Three-Dimensional Explicit Finite Element Simulation of Piled-Raft Foundation

This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.

The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Study of Mechanical Characteristics for Polymer Composite Reinforced by Particles of (Al2O3) or (Al)

A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).

Tensile test results showed the maximum value of elastic modulus reached (2400MPa.)  in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.)  in the case of reinforcing with (Al2O3) particles of the same weight fraction.

  When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength

... Show More
View Publication Preview PDF