Robot manipulator is a multi-input multi-output system with high complex nonlinear dynamics, requiring an advanced controller in order to track a specific trajectory. In this work, forward and inverse kinematics are presented based on Denavit Hartenberg notation to convert the end effector planned path from cartesian space to joint space and vice versa where a cubic spline interpolation is used for trajectory segments to ensure the continuity in velocity and acceleration. Also, the derived mathematical dynamic model is based on Eular Lagrange energy method to contain the effect of friction and disturbance torques beside the inertia and Coriolis effect. Two types of controller are applied ; the nonlinear computed torque control (CTC) and the simpler form of its Proportional Derivative plus Gravity (PD+G) where they are designed to reduce the tracking trajectory errors which tend to zero where the used Kp and Kv gains are 900,60. Also, the RMS errors for tracking a step input of CTC were equal to [2.5E-14, 4.4E-14, 5.0E-14, -4.7E-14, -3.9E-14, -4.6E-14] (deg) and of PD+G were equal to [-1.77E-5, -1.22E-6, -4.28E-6, -8.97E-6, -1.32E-5, 1.05E-5] (deg) for joints one to six, respectively. The results show that CTC is more accurate but requires additional acceleration input and is more computationally extensive and PD+G controller is performed with acceptable tracking errors in manipulator position control applications.
In this paper a system is designed and implemented using a Field Programmable Gate Array (FPGA) to move objects from a pick up location to a delivery location. This transportation of objects is done via a vehicle equipped with a robot arm and an FPGA. The path between the two locations is followed by recognizing a black line between them. The black line is sensed by Infrared sensors (IR) located on the front and on the back of the vehicle. The Robot was successfully implemented by programming the Field Programmable Gate Array with the designed system that was described as a state diagram and the robot operated properly.
In this paper, the Active Suspension System (ASS) of road vehicles was investigated. In addition to the conventional stiffness and damper, the proposed ASS includes a fuzzy controller, a hydraulic actuator, and an LVDT position sensor. Furthermore, this paper presents a nonlinear model describing the operation of the hydraulic actuator as a part of the suspension system. Additionally, the detailed steps of the fuzzy controller design for such a system are introduced. A MATLAB/Simulink model was constructed to study the proposed ASS at different profiles of road irregularities. The results have shown that the proposed ASS has superior performance compared to the conventional Passive Suspension System (PSS), where the body displacemen
... Show MoreThe research aims to improve the effectiveness of internal control system according to a model COSO, by identifying the availability of system components according to the model and then improve the effectiveness of each component by focusing on areas for improvement in each component, as it was addressed to a model COSO and then Maamth with the environment, the current Iraqi by introducing some improvements on the form of some mechanisms of corporate governance of the Council of Directors, and senior management, the Audit Committee, Committee appointments, especially that supplies application available in the laws and legislation, the current Iraqi, taking into consideration to make some
... Show MoreThis research introduce a study with application on Principal Component Regression obtained from some of the explainatory variables to limitate Multicollinearity problem among these variables and gain staibilty in their estimations more than those which yield from Ordinary Least Squares. But the cost that we pay in the other hand losing a little power of the estimation of the predictive regression function in explaining the essential variations. A suggested numerical formula has been proposed and applied by the researchers as optimal solution, and vererifing the its efficiency by a program written by the researchers themselves for this porpuse through some creterions: Cumulative Percentage Variance, Coefficient of Determination, Variance
... Show MoreThis research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show MoreThat the need for the teacher to these two variables (control, ego strength) is urgently needed and necessary for success in his career, the educational process to control the situation and control the positive behavior resulting from it by the teacher education is one of the requirements for success of the plans and objectives of the educational process.
The goal of current research to
1) measuring the level of the degree of control the school and middle school teachers.
2) measuring the level of the degree of ego strength of the school and middle school teachers.
3) to identify statistically sig
... Show More