The two-dimensional transient heat conduction through a thermal insulation of temperature dependent thermal properties is investigated numerically using the FVM. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner surface with a step change in temperature and subjected at its outer surface with a natural convection boundary condition associated with a periodic change in ambient temperature and heat flux of solar radiation. Two thermal insulation materials were selected. The fully implicit time scheme is selected to represent the time discretization. The arithmetic mean thermal conductivity is chosen to be the value of the approximated thermal conductivity at the interface between adjacent control volumes. A temperature dependent specific heat capacity proposed by a 4th Degree polynomial is fitted. A good agreement is obtained when the predicted results are compared with those obtained from the analytical solution.
Hypothesis Nanofluid flooding has been identified as a promising method for enhanced oil recovery (EOR) and improved Carbon geo-sequestration (CGS). However, it is unclear how nanoparticles (NPs) influence the CO2-brine interfacial tension (γ), which is a key parameter in pore-to reservoirs-scale fluid dynamics, and consequently project success. The effects of pressure, temperature, salinity, and NPs concentration on CO2-silica (hydrophilic or hydrophobic) nanofluid γ was thus systematically investigated to understand the influence of nanofluid flooding on CO2 geo-storage. Experiments Pendant drop method was used to measure CO2/nanofluid γ at carbon storage conditions using high pressure-high temperature optical cell. Findings CO2/nano
... Show MoreErythrocytes aggregation is an important physiological phenomenon in the circulation of blood, and is a basic characteristic of normal blood that plays a major role in cardiovascular system especially in the microcirculation. Blood samples have been taken from (30) volunteers (15 male, and 15 female), their ages (20-30) years. The Erythrocytes Sedimentation Rate (ESR) for those subjects was measured at different Packed Cells Volume (PCV) (10%-25%), and also it was measured at different temperature (10oC-25oC). The results show that there was a highly significant decrease (P<0.01) in ESR when the PCV increase and a highly significant increase (P<0.01) in ESR when the temperatures increase. The conclusion from these results is that the ESR va
... Show MoreThe temperature influence on the fluorescence lifetime, quantum yields and non-radiative rate parameter or coumarin 460 dye dissolved in methanol was investigated in the temperature range (160-300 k). A single photon counting technique was used or measuring the fluorescence decay curves. A noticeable decrease of the fluorescence lifetime with increasing the temperature was observed. The non-radiative activation energy of 10.57 K.J. mole-1 was measured by the help of Arrhenius plot.
An experimental program was conducted to determine the residual of composite Steel Beams-Reinforced Concrete (SB-RC) deck floors fabricated from a rolled steel beam topped with a reinforced concrete slab, exposed to high temperatures (fire flame) of 300, 500, and 700ºC for 1 hour, and then allowed to cool down by leaving them in the lab condition to return to the ambient temperature. The burning results showed that, by exposing them to a fire flame of up to 300ºC, no serious permanent deflection occurred. It was also noticed that the specimen recovered 93% of 19.2 mm of the deflection caused by burning. The recovered deflection of burned composite SB-RC deck floor at 500ºC was 40% of 77.9 mm of the deflection caused by burning with a res
... Show MoreThe main goal of this work is to obtain the plasma electron temperature Te by optical emission spectroscopy of low pressure microwave argon plasma, as a function of working pressure and microwave power. A plasma system was designed and constructed in our laboratory using a magnetron of domestic microwave oven with power 800W without any commercial part. The applied voltage on the magnetron electrical circuit is changed for the purpose of obtaining the variable values of the microwave power. The spectral detection is performed with a spectrometer of wavelength range (200−1000nm). The working pressure and magnetron applied voltage were 0.3-3.0mbar and 180-240V, respectively. Two methods had been applied to estimate the electron temperatu
... Show MoreThin films of pure tin mono-sulfide SnS and tin mono-sulfide for (1,2,3,4)% fluorine SnS:F with Thicknesses of (0.85 ±0.05) ?m and (0.45±0.05) ?m respectively were prepared by chemical spray pyrolysis technique. the effect of doping of F on structural and optical properties has been studied. X-Ray diffraction analysis showed that the prepared films were polycrystalline with orthorhombic structure. It was found that doping increased the intensity of diffraction peaks. Optical properties of all samples were studied by recording the absorption and transmission spectrum in range of wave lengths (300-900) nm. The optical energy gap for direct forbidden transi
... Show MoreThe magnetic properties of a pure Nickel metal and Nickel-Zinc-Manganese ferrites having the chemical formula Ni0.1(Zn0.4Mn0.6)0.9Fe2O4 were studied. The phase formation and crystal structure was studied by using x-ray diffraction which confirmed the formation of pure single spinel cubic phase with space group (Fd3m) in the ferrite. The samples microstructure was studied with scanning electron microstructure and EDX. The magnetic properties of the ferrite and nickel metal were characterized by using a laboratory setup with a magnetic field in the range from 0-500 G. The ferrite showed perfect soft spinel phase behavior while the nickel sample showed higher magnetic loss an
... Show More