A dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally the discrepancy of the results was 17.4906% when the severe nonlinearity is considered.
The current study aimed at (identifying the impact of a proposed strategy based on the realistic mathematics theory in the mathematical interrelation among the third intermediate grade students), two samples from the third intermediate grade were tested in a school affiliated to Rusafa I General education Directorate in Baghdad for the academic year (2022-2021)the experimental group will study according to the proposed strategy and it consisted of (30) female students , the control group will study through the traditional method and the number of its students is (30), thus the study sample consisted of (60) female students, the two groups were equalized in the variables (age in months, intelligence, prior knowledge) and to achieve the study
... Show MoreThe solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MoreThis study aimed to explore the manufacture of high-fat pellets for obesity induction diets in male Wistar rats and determined its effect on lipid profiles and body mass index. It was an experimental laboratory method with a post-test randomized control group. Formulation of high-fat pellets (HFD) and physico-chemical characteristics of pellets were conducted in September 2019. This study used about 28 male Wistar white rats, two months old, and 150-200 g body weight. Rats were acclimatized for seven days, then divided into four groups: 7 rats were given a standard feed of Confeed PARS CP594 (P0), and three groups (P1, P2, P3) were given high-fat feed (HFD FII) 30 g/head/day. The result showed that the mean fat content of Formula II pell
... Show MoreThis study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators
The techniques of fractional calculus are applied successfully in many branches of science and engineering, one of the techniques is the Elzaki Adomian decomposition method (EADM), which researchers did not study with the fractional derivative of Caputo Fabrizio. This work aims to study the Elzaki Adomian decomposition method (EADM) to solve fractional differential equations with the Caputo-Fabrizio derivative. We presented the algorithm of this method with the CF operator and discussed its convergence by using the method of the Cauchy series then, the method has applied to solve Burger, heat-like, and, couped Burger equations with the Caputo -Fabrizio operator. To conclude the method was convergent and effective for solving this type of
... Show MoreFree radicals are reactive compounds, their excessive production is considered to be an important cause of oxidative damage in biomolecules causing degenerative diseases. Polyphenols are one of the most important groups of secondary metabolites of plants, which have an antioxidant activity depending on their properties as hydrogen donors. Echinops polyceras Boiss. (Asteraceae) is one of Echinops genus species that spread in Syria, Lebanon, and Palestine. Phytochemicals found in this species leaves have been extracted with gradient polarity solvents, and primary screening of the secondary metabolites was established. The phenolic compounds and flavonoids contents were determined. The free radicals scavenging activity was evaluated for all
... Show MoreAbstract: A novel design of Mach Zehnder Interferometer (MZI) in terms of using special type of optical fiber that has double clad with graded distribution of the refractive index that can be easily implemented practically was suggested and simulated in this work. The suggested design is compact, rapid, and is simple to be modified and tested. The simulated design contains a MZI of 1546.74 nm of central wavelength that is constructed using special type of double clad optical fiber that has two different numerical apertures. The first aperture will supply single mode propagation via its core, while the second numerical aperture supports a zigzag wave propagation (multimode) in the first clad region. The interferometer’s
... Show MoreThis paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa
... Show MoreIn this paper, the concept of a hyper structure KU-algebra is introduced and some related properties are investigated. Also, some types of hyper KU-algebras are studied and the relationship between them is stated. Then a hyper KU-ideal of a hyper structure KU-algebra is studied and a few properties are obtained. Furthermore, the notion of a homomorphism is discussed.