This article introduces a numerical study on heat exchange and corrosion coefficients of Zinc–water nanofluid stream in a circular tube fitted with swirl generator utilizing CFD emulation. Different forms of swirl generator which have the following properties of plain twisted tape (PTT) and baffle wings twisted tape (BTT) embeds with various ratio of twisting (y = 2.93, 3.91 and 4.89), baffle inclination angles (β = 0°, - 30° and 30) joined with 1%, 1.5% and 2% volume fraction of ZnO nanofluid were utilized for simulation. The results demonstrated that the heat and friction coefficients conducted by these two forms of vortex generator raised with Reynolds number, twist ratio and baffle inclination angles decreases. Likewise, the results showed that the heat transfer rate raised with accretion of ZnO nanoparticle concentration. Furthermore, the maximum rate of heat transfer with significant intension in friction coefficient has been produced by baffle wings tape with ratio of twisting y=2.93 and baffle angle β= -30 with 2% volume fraction of ZnO nanofluid.
This research includes the study of dual data models with mixed random parameters, which contain two types of parameters, the first is random and the other is fixed. For the random parameter, it is obtained as a result of differences in the marginal tendencies of the cross sections, and for the fixed parameter, it is obtained as a result of differences in fixed limits, and random errors for each section. Accidental bearing the characteristic of heterogeneity of variance in addition to the presence of serial correlation of the first degree, and the main objective in this research is the use of efficient methods commensurate with the paired data in the case of small samples, and to achieve this goal, the feasible general least squa
... Show More
The nanocompsite of alumina (Al2O3) produced a number of beneficial effects in alloys. There is increasing in resistance of materials to surface related failures , such as the mechanical properties , fatigue and stress corrosion cracking .The experimental results observed that the adding of reinforced nanomaterials type Al2O3 enhanced the HB hardness, UTS, 0.2 YS and ductility of 2014 Al/Al2O3 nano composites . the analysis of experiments, indicated that The maximum enhancement was observed at 0.4 wt.% Al2O3. The ultimate improvement percentage were 15.78% HB hardness, 18.1% (UTS), 12.86% (
... Show MoreThe current research aims to analyze the role of participatory budgeting in improving performance, especially during crises such as the Covid-19 crisis. The research used the descriptive analytical method to reach the results by distributing 100 questionnaires to a number of employees in Iraqi joint stock companies and at multiple administrative levels. The research came to several important conclusions, the most important of which is that the bottom-up approach to budgeting produces more achievable budgets than the top-down approach, which is imposed on the company by senior management with much less employee participation. Additionally, there is a better information flow from the lower levels of the organization to the upper management
... Show MoreTwisted tape insertion in smooth plain tube is one of types of passive methods that is used to enhance heat transfer. Swirl fluid flow inside tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with twisted tape has twist ratio of y = (H/D) = (150/17) =8.8 along with a plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nusselt number
... Show MoreTwisted tape insertion in the smooth plain tube is one of the types of passive methods that are used to enhance heat transfer. Swirl fluid flow inside the tube and related heat transfer characteristics are very complex. ANSYS FLUENT (V 16.1) and ASPEN industrial program are used in analyzing this technique for enhancement heat transfer. A circular plain tube has length L=8534mm and 17 mm inner diameter with a twisted tape of twist ratio of y = (H/D) = (150/17) =8.8 along the plain tube were considered for this study. Eight Reynolds numbers (Re) of 784, 1000, 2000, 3000, 4000, 5000, 6000 and 7000 are used to analyze the response of thermal performance. Crude oil API 28 exit temperature, film heat transfer coefficient, Nus
... Show MoreAn analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
Problem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreFluidization process is widely used by a great assortment of industries worldwide and represents a trillion dollar industry [6]. They are currently used in separation, classification, drying and mixing of particles, chemical reactions and regeneration processes; one of these processes is the mass transfer from an immersed surface to a gas fluidized bed