Preferred Language
Articles
/
alkej-418
Reverse Engineering Representation Using an Image Processing Modification
...Show More Authors

In the reverse engineering approach, a massive amount of point data is gathered together during data acquisition and this leads to larger file sizes and longer information data handling time. In addition, fitting of surfaces of these data point is time-consuming and demands particular skills. In the present work a method for getting the control points of any profile has been presented. Where, many process for an image modification was explained using Solid Work program, and a parametric equation of the profile that proposed has been derived using Bezier technique with the control points that adopted. Finally, the proposed profile was machined using 3-aixs CNC milling machine and a compression in dimensions process has been occurred between the proposed and original part so as to demonstrate the verification of the proposed method.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Basrah Journal Of Science
Hiding Three Images at one image by Using Wavelet Coefficients at Color Image
...Show More Authors

Publication Date
Wed Oct 11 2023
Journal Name
Al-khwarizmi Engineering Journal
Baghdad's University Solar Power Potentials: An Exploration with PVsyst and Helioscope at Al-Khwarizmi College of Engineering
...Show More Authors

Globally, buildings use about 40% of energy. Many elements, such as the physical properties of the structure, the efficiency of the cooling and heating systems, the activity of the occupants, and the building’s sustainability, affect the energy consumption of a building. It is really difficult to predict how much energy a building will need. To improve the building’s sustainability and create sustainable energy sources to reduce carbon dioxide emissions from fossil fuel combustion, estimating the building's energy use is necessary. This paper explains the energy consumed in the lecture building of the Al-Khwarizmi College of Engineering, University of Baghdad (UOB), Baghdad, Iraq. The weather data and the building construction informati

... Show More
Publication Date
Thu Jan 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression using Hierarchal Linear Polynomial Coding
...Show More Authors

Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network
...Show More Authors

Image Fusion Using A Convolutional Neural Network

Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
Visible image watermarking using biorthogonal wavelet transform
...Show More Authors

In this paper, visible image watermarking algorithm based on biorthogonal wavelet
transform is proposed. The watermark (logo) of type binary image can be embedded in the
host gray image by using coefficients bands of the transformed host image by biorthogonal
transform domain. The logo image can be embedded in the top-left corner or spread over the
whole host image. A scaling value (α) in the frequency domain is introduced to control the
perception of the watermarked image. Experimental results show that this watermark
algorithm gives visible logo with and no losses in the recovery process of the original image,
the calculated PSNR values support that. Good robustness against attempt to remove the
watermark was s

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 05 2019
Journal Name
Journal Of Engineering And Applied Sciences
Secure Image Steganography using Biorthogonal Wavelet Transform
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (4)
Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
The International Journal Of Literary Humanities
The Stereotypical Representation of Black Women in Caryl Phillips’ "Cambridge"
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Heliyon
Modification of SBA-15 mesoporous silica as an active heterogeneous catalyst for the hydroisomerization and hydrocracking of n-heptane
...Show More Authors

View Publication
Scopus (63)
Crossref (60)
Scopus Clarivate Crossref
Publication Date
Fri Jun 06 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Validity of 3D Reconstructed Computed Tomographic Image in Using Craniometrical Measurements of the Skull for Sex Differentiation (An Iraqi Study)
...Show More Authors

Background: The skull offers a high resistance of adverse environmental conditions over time, resulting in the greater stability of the dimorphic features as compared to other skeletal bony pieces. Sex determination of human skeletal considered an initial step in its identification. The present study is undertaken to evaluate the validity of 3D reconstructed computed tomographic images in sex differentiation by using craniometrical measurements at various parts of the skull. Materials and Method: 3D reconstructed computed tomographic scanning of 100 Iraqi subject, (50 males and 50 females) were analyzed with their age range from20-70 years old. Craniometrical linear measurements were located and marked on both side of the 3D skull images.

... Show More
View Publication Preview PDF