In this work, an experimental analysis is made to predict the thermal performance of the natural-convection phenomenon from a heated vertical externally finned-tube to surrounding air through an open-ended enclosure. Two different configurations of longitudinal rectangular fin namely, continuous and interrupted are utilized with constant thickness, different numbers, and different heights are extended radially on the outer surface of a heated tube. The tube is heated electrically from inner surface with five varied power input magnitudes. The effect of fins configuration, fins number, fins height, and heat flux of the inner tube surface on the thermal performance of natural convection have been studied and analyzed experimentally. Obtained results show that the tube with twelve interrupted longitudinal fins gives the best natural-convection thermal performance in terms of average Nusselt number, about 20% greater than that for the tube with continuous fins. Experimental correlations to predict the average Nusselt number for the heated tubes with continuous and interrupted longitudinal fins are proposed. The present data are compared to previous study and good convergence is noticed.
Titanium oxide nanoparticles-modified smectite (SMC-nTiO2) as a low-cost adsorbent was investigated for the removal of Rhodamine B (RhB) from aqueous solutions. The adsorbents (SMC and SMC-nTiO2) were characterized by scanning electron microscopy, Fourier transforms infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The effects of various parameters like contact time, adsorbent weight, pH, and temperatures were examined. Three kinetic equations (pseudo-first-order (PFO), pseudo-second-order (PSO), and intra-particle diffusion) were used to evaluate the experimental kinetic of the data and the results showed that the adsorption process is in line with the PSO kinetic model. Adsorption equilibrium isotherms were modeled using La
... Show MoreMany stone tools were found on a hill south of the Hor Al-Dalmaj which is located in the central part of the alluvial plain of Mesopotamia, between the Tigris and Euphrates Rivers. The types of rocks from which the studied stone tools were made are not found in the alluvial plain, because it consists of friable sand, silt, and clay. All existing sediments were precipitated in riverine environments such as point bar, over bank, and floodplain sediments. The collected stone tools were described with a magnifying glass (10 x) and a polarized microscope after they were thin sectioned. Microscopic analysis showed that these stone tools are made of sedimentary, volcanic igneous and metamorphic rocks, such as: sandstones, limestones, chert, con
... Show MoreThe analysis of the classic principal components are sensitive to the outliers where they are calculated from the characteristic values and characteristic vectors of correlation matrix or variance Non-Robust, which yields an incorrect results in the case of these data contains the outliers values. In order to treat this problem, we resort to use the robust methods where there are many robust methods Will be touched to some of them.
The robust measurement estimators include the measurement of direct robust estimators for characteristic values by using characteristic vectors without relying on robust estimators for the variance and covariance matrices. Also the analysis of the princ
... Show MoreAs the process of estimate for model and variable selection significant is a crucial process in the semi-parametric modeling At the beginning of the modeling process often At there are many explanatory variables to Avoid the loss of any explanatory elements may be important as a result , the selection of significant variables become necessary , so the process of variable selection is not intended to simplifying model complexity explanation , and also predicting. In this research was to use some of the semi-parametric methods (LASSO-MAVE , MAVE and The proposal method (Adaptive LASSO-MAVE) for variable selection and estimate semi-parametric single index model (SSIM) at the same time .
... Show More