Preferred Language
Articles
/
alkej-406
Best Level of Parameters for a Critical Buckling Load for Circular Thin- Walled Structure Subjected to Bending
...Show More Authors

Circular thin walled structures have wide range of applications. This type of structure is generally exposed to different types of loads, but one of the most important types is a buckling. In this work, the phenomena of buckling was studied by using finite element analysis. The circular thin walled structure in this study is constructed from; cylindrical thin shell strengthen by longitudinal stringers, subjected to pure bending in one plane. In addition, Taguchi method was used to identify the optimum combination set of parameters for enhancement of the critical buckling load value, as well as to investigate the most effective parameter. The parameters that have been analyzed were; cylinder shell thickness, shape of stiffeners section and the number of stiffeners. Furthermore, to verify the contribution of parameters on buckling response, the analysis of variance technique (ANOVA) method was implemented, which gave the contribution weight as percentages. The analysis of results by these two methods showed that the more effective parameter on the critical buckling load was the thickness of cylinder’s shell and the lowest effective was the number of stiffeners The values of parameters that gave the best critical buckling load combination were: 1) the ratio of cylinder’s diameter to thickness of its shell was 133, 2) the ratio of the depth to thickness of stiffeners was1.6, and 3) the number of stiffeners was 12.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Oct 01 2010
Journal Name
Iraqi Journal Of Physics
Effect of the Thickness and Annealing Temperature on the Structural Properties of Thin CdS Films Prepared by Thermal Evaporation
...Show More Authors

A thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The Effect of Annealing on The Structural and Optical Properties of Copper Oxide Thin Films Prepared by SILAR Method
...Show More Authors

Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 05 2019
Journal Name
Iraqi Journal Of Physics
The Influence of RF power, pressure and substrate temperature on optical properties of RF Sputtered vanadium pentoxide thin films
...Show More Authors

The V2O5 films were deposited on glass substrates which produce using "radio frequency (RF)"power supply and Argon gas technique. The optical properties were investigated by, UV spectroscopy at "radio frequency" (RF) power ranging from 75 - 150 Watt and gas pressure, (0.03, 0.05 and 0.007 Torr), and substrate temperature (359, 373,473 and 573) K. The UV-Visible analysis shows that the average transmittance of all films in the range 40-65 %. When the thickness has been increased the transhumance was decreased from (65-40) %. The values of energy band gap were lowered from (3.02-2.9 eV) with the increase of thickness the films in relation to an increase in power, The energy gap decreased (2.8 - 2.7) eV with an increase in the pressure and

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Study the effect of thermal annealing on some physical properties of thin Cu2SiO3 films prepared by pulsed laser deposition
...Show More Authors

The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat May 01 2021
Journal Name
Key Engineering Materials
Influence of Cu Dopant on SnS Thin Films Characterization and Enhance Efficiency of p-SnS:Cu /n-Si Solar Cell
...Show More Authors

Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Fri Jun 18 2004
Journal Name
Iraqi Journal Of Laser
Effect of Operating Temperature on Performance of Obliquely Deposited Bi, Sb and Bi-Sb Semimetal Thin Film Laser Detectors
...Show More Authors

Obliquely deposited (70o) Bi, Sb, and Bi-Sb alloy thin films have been prepared by thermal
resistive technique. Structural properties of these films were studied using XRD. Their resistance and
voltage responsivity for Nd:YAG and CO2 laser pulses have been recorded as function of operating
temperature between 10 oC and 120 oC. It was found that the maximum responsivity for these detectors
can be obtained at 75 oC. On the other hand, the dependence of responsivity on the width of detectors was
investigated.

View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Chalcogenide Letters
The dependence of the energy density states on the substitution of chemical elements in the Se6Te4-xSbx thin film
...Show More Authors

The energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det

... Show More
View Publication
Scopus (22)
Crossref (17)
Scopus Crossref
Publication Date
Sun Jun 01 2008
Journal Name
Baghdad Science Journal
The role of annealing temperature on the optical energy gap and Urbach energy of Se:2%Sb thin films
...Show More Authors

The optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.

View Publication Preview PDF
Crossref
Publication Date
Fri May 01 2015
Journal Name
Ibn Al-haitham J. For Pure & Appl. Sci.
Study the Effect of Irradiation on Structural and Optical Properties of (CdO) Thin Films that Prepared by Spray Pyrolysis
...Show More Authors

In this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the op

... Show More
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Effects of multi- Deposition on the structural and optical properties of CdS nanocrystalline thin film prepared by CBD technique.
...Show More Authors

Cadmium sulfide (CdS) nanocrystalline thin films have been prepared by chemical bath deposition (CBD) technique on commercial glass substrates at 70ºC temperature. Cadmium chloride (CdCl2) as a source of cadmium (Cd), thiourea (CS(NH2)2) as a source of sulfur and ammonia solution (NH4OH) were added to maintain the pH value of the solution at 10. The characterization of thin films was carried out through the structural and optical properties by X-ray diffraction (XRD) and UV-VIS spectroscopy. A UV-VIS optical spectroscopy study was carried out to determine the band gap of the nanocrystalline CdS thin film and it showed a blue shift with respect to the bulk value (from 3.9 - 2.4eV). In present w

... Show More
View Publication Preview PDF
Crossref (1)
Crossref