Preferred Language
Articles
/
alkej-405
Effect of optimal shot peening time on fatigue life for aluminum alloy 6061-T651
...Show More Authors

The compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).

Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated  to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.

A response surface methodology (RSM) is presented to optimize the surface properties of fatigue life due to effect of two parameters (shot peening time and fatigue stresses). A statistical software was used to perform analysis of variance (ANOVA)  to predict the optimum shot peening time. The results were 8.007 minutes without notch and 7.53 minutes with notch. Two 2nd degree polynomials were obtained for the two studied cases with confidence level of 95%. Experimentally26.67% enhancement in fatigue life was obtained, but after using (RSM), the results gave 61% improvement, compared with ref. [2].

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Interdisciplinary Mathematics
Studying the result involution graphs for HS and McL Leech lattice groups
...Show More Authors

Let G be a finite group, the result is the involution graph of G, which is an undirected simple graph denoted by the group G as the vertex set and x, y ∈ G adjacent if xy and (xy)2 = 1. In this article, we investigate certain properties of G, the Leech lattice groups HS and McL. The study involves calculating the diameter, the radius, and the girth of ΓGRI.

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Alexandria Engineering Journal
U-Net for genomic sequencing: A novel approach to DNA sequence classification
...Show More Authors

The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
An Evolutionary Algorithm for Task scheduling Problem in the Cloud-Fog environment
...Show More Authors
Abstract<p>The rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme</p> ... Show More
View Publication
Scopus (14)
Crossref (3)
Scopus Crossref
Publication Date
Mon Mar 23 2020
Journal Name
International Journal Of Nanoscience
Gold Nanoparticles Synthesis Using Environmentally Friendly Approach for Inhibition Human Breast Cancer
...Show More Authors

In this study, gold nanoparticles were synthesized in a single step biosynthetic method using aqueous leaves extract of thymus vulgaris L. It acts as a reducing and capping agent. The characterizations of nanoparticles were carried out using UV-Visible spectra, X-ray diffraction (XRD) and FTIR. The surface plasmon resonance of the as-prepared gold nanoparticles (GNPs) showed the surface plasmon resonance centered at 550[Formula: see text]nm. The XRD pattern showed that the strong four intense peaks indicated the crystalline nature and the face centered cubic structure of the gold nanoparticles. The average crystallite size of the AuNPs was 14.93[Formula: see text]nm. Field emission scanning electron microscope (FESEM) was used to s

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Expert Systems With Applications
A long short-term recurrent spatial-temporal fusion for myoelectric pattern recognition
...Show More Authors

View Publication
Scopus (21)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
2022 International Conference On Data Science And Intelligent Computing (icdsic)
An improved Bi-LSTM performance using Dt-WE for implicit aspect extraction
...Show More Authors

In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Water, Air And Soil Pollution
Cladophora Algae Modified with CuO Nanoparticles for Tetracycline Removal from Aqueous Solutions
...Show More Authors

Modified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time

... Show More
Scopus (29)
Crossref (27)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Biocatalysis And Agricultural Biotechnology
Enhancing the prodigiosin pigment by adding Ag\TiO2 synergism for antibacterial activity
...Show More Authors

View Publication Preview PDF
Scopus (13)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Mon Nov 21 2022
Journal Name
Sensors
Deep Learning-Based Computer-Aided Diagnosis (CAD): Applications for Medical Image Datasets
...Show More Authors

Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes

... Show More
View Publication
Scopus (29)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Artificial Neural Network and Latent Semantic Analysis for Adverse Drug Reaction Detection
...Show More Authors

Adverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (9)
Scopus Crossref