The distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate from all terminal units. The hydraulic and energy equations governing the performance of unit solved with the aid of FORTRAN code with considering the following parameters: total water flow rate, chilled water supply temperature, and variable valve opening. It was found that the optimum solution of three-way valve case at 8°C water supply temperature, 0.12 kg/s total water flow rate and valve opening order (valve 1: 100%, valve 2: 100% and valve 3: 75%) with total heat rate (987.92 Watt) and standard deviation (1.181E-3). Also, for the two-way valve case the results showed that the optimum condition at 8°C water supply temperature, 0.12 kg/s total water flow rate and valve opening order (valve 1: 75%, valve 2: 75% and valve 3: 50%) with total heat rate and standard deviation (717Watt) and (5.69E-4) respectively.
Industrial dyes are major pollutants in wastewater and river water with an initial visible concentration of 1 mg/L. Recent studies have shown the possibility of using polyphenol oxidase in catalytic biological treatment due to its ability to oxidize a large number of dyes and pollutants in wastewater and the flexibility to work in wide ranges of temperature, pH and salinity. It is easy availability as well as the low economic cost resulting from its use in biological treatments, this enzyme polyphenol oxidase was used. The findings in this study showed that the extraction of polyphenol oxidase (PPO) from potato peel was homogenized with potassium phosphate buffer (0.1 M, pH 7) at a ratio of 1:10 (weight: volume) for two min. The res
... Show MoreIn this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
Abstract
This work involves studying corrosion resistance of AA 6061T6 butt welded joints using Two different welding processes, tungsten inert gas (TIG) and a solid state welding process known as friction stir welding, TIG welding process carried out by using Rolled sheet of thickness6mm to obtain a weld joint with dimension of (100, 50, 5) mm using ER4043 DE (Al Si5) as filler metal and argon as shielding gas, while Friction stir welding process carried out using CNC milling machine with a tool of rotational speed 1000 rpm and welding speed of 50mm/min to obtain the same butt joint dimensions. Also one of weld joint in the same dimensions subjected to synergistic weld
... Show MorePhlebotomus papatasi sand fly is the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL) in Iraq. The aim of this study was to assess and predict the effects of climate change on the distribution of the cutaneous leishmaniasis (CL) cases and the main vector presently and in the future. Data of the CL cases were collected for the period (2000-2018) in addition to sand fly (SF) abundance. Geographic information system, R studio and MaxEnt (Maximum entropy niche model) software were used for analysis and predict effect of (elevation, population, Bio1-19, and Bio28-35) on CL cases distribution and SF occurrence. HadGEM2-ES model with two climate change scenarios, RCP 4.5 and RCP 8.5 were used for future projections 2050. The results showed th
... Show MoreThis study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t
... Show MoreThe problem of solid waste from domestic, industrial, commercial and medical sources is one of the most important problems facing the local administration in all Iraqi cities. The danger of this problem increases with the rapid increase in the population, changing lifestyles, consumption patterns, limited land suitable for landfill, and high costs of collection and disposal. This research aims to solve these problems by determining the locations of current landfills located in the outskirts of Baghdad Governorate. The ArcGIS program was used, where the sites of the landfills were determined on the map and through the available data about the areas. it was concluded that the existing landfill sites do not meet environmental conditions and
... Show MoreIn this work, monitoring of monthly variation (from May 2016 to October 2016) in the concentration of the metals (Co, Zn, Cd, Pb, Ni and Fe) from Al-Diwaniya city of Iraq. Investigation about the pollution with these metals was achieved from five selected sites locate in study area by flame atomic absorption spectroscopy. The results showed a wide variation in the levels of heavy metals from site to site and from month to month. A total of 180 surface soil samples were analyzed to detecting the pollution with selected samples. The resultsshowed that the highest concentration with Ni was 6.290 mg kg-1 while the lowest concentration detected with Ni was 0.080 mg kg-1. The results of pollution index (enrichment factor, contamination factor, po
... Show MoreThis paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re
... Show MoreFeed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m
... Show More