Preferred Language
Articles
/
alkej-395
Cellulose Fibers Dissolution in Alkaline Solution
...Show More Authors

In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of hydrogen peroxide (H2O2), oxalic acid (C2H2O4) and ferrous sulfate (FeSO4). This reagent reacts with cellulose fibers and produces free radicals which increase cellulose dissolution. In this work three variables were studied: cooling bath temperature (-15oCand-20oC), NaOH concentration (4%, 6%, 8% and12%) and time of Fenton's reagent treatment (1-48) hrs. The results showed that the best percent of cellulose dissolution was (42 wt %) which occurred at treatment time (24 hours), temperature (-20oC) and NaOH concentration 8%. In another set of experiments urea was added to NaOH solution as a catalyst with proportion (6%NaOH+4% urea) at two temperatures -15 and -20 oC. The results show that the solubility of cellulose increase to 62% for the sample which treated with Fenton's reagent and to 35% for the untreated sample, both values were obtained at -15oC.

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Advanced Research
ON STABILITY AND THE BOUNDEDNESS OF THE ZERO SOLUTION OF FIFTH ORDER
...Show More Authors

This paper is illustrates the sufficient conditions of the uniformly asymptotically stable and the bounded of the zero solution of fifth order nonlinear differential equation with a variable delay τ(t)

Publication Date
Mon May 15 2017
Journal Name
Ibn Al- Haitham J. For Pure & Appl. Sci.
Conductometric Studies of Aqueous Solution of Thymine and Adenosine At Different Temperatures
...Show More Authors

Molar conductivity of different concentrations of thymine and adenosine in water , sodium acetate and ammonium chloride solution at different temperatures , 283. 15-323.15 K has been determined from direct conductivity measurements , examination of aqueous mixture of thymine and adenosine with Onsager equation reveal deviation from linearity at high concentration .This deviation was explained in term of molecular interaction . Ostwald dilution law also examined with the above mixtures lead to calculation of limiting molar conductivities and dissociation constants of both nucleic acid in water , sodium acetate and ammonium chloride. The agreement between the values obtained for Onsager equa

... Show More
Publication Date
Mon Sep 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of-Copper Ions-from Aqueous Solution Using Liquid-Surfactant-Membrane Technique
...Show More Authors

Extraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Mon Apr 19 2021
Journal Name
Iraqi Journal Of Agricultural Sciences
TETRACYCLINE ANTIBIOTIC REMOVAL FROM AQUEOUS SOLUTION USING CLADOPHORA AND SPIRULINA ALGAE BIOMASS
...Show More Authors

Cladophora and Spirulina algae biomass have been used for the removal of Tetracycline (TC) antibiotic from aqueous solution. Different operation conditions were varied in batch process, such as initial antibiotic concentration, different biomass dosage and type, contact time, agitation speed, and initial pH. The result showed that the maximum removal efficiencies by using 1.25 g/100 ml Cladophora and 0.5 g/100 ml Spirulina algae biomass were 95% and 94% respectively. At the optimum experimental condition of temperature 25°C, initial TC concentration 50 mg/l, contact time 2.5hr, agitation speed 200 rpm and pH 6.5. The characterization of Cladophora and Spirulina biomass by Fourier transform infrared (FTIR) indicates that the presenc

... Show More
Crossref (3)
Crossref
Publication Date
Sun Apr 30 2017
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Solution of High Order Ordinary Boundary Value Problems Using Semi-Analytic Technique
...Show More Authors

The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.

View Publication
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Improved Runge-Kutta Method for Oscillatory Problem Solution Using Trigonometric Fitting Approach
...Show More Authors

This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions  and   for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency  is used. The novel method is more accurate than the conventional Runge-Ku

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
...Show More Authors

In this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
A PARTICULAR SOLUTION OF THE TWO AND THREE DIMENSIONAL TRANSIENT DIFFUSION EQUATIONS
...Show More Authors

A particular solution of the two and three dimensional unsteady state thermal or mass diffusion equation is obtained by introducing a combination of variables of the form,
η = (x+y) / √ct , and η = (x+y+z) / √ct, for two and three dimensional equations
respectively. And the corresponding solutions are,
θ (t,x,y) = θ0 erfc (x+y)/√8ct and θ( t,x,y,z) =θ0 erfc (x+y+z/√12ct)

View Publication Preview PDF
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Approximated Solution for The Nonlinear Second Order Delay Multi-Value Problems
...Show More Authors

This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.

View Publication Preview PDF
Crossref
Publication Date
Tue Mar 12 2019
Journal Name
Journal Of Global Pharma Technology,
Bentonite as an adsorption surface for bromothymol blue dye from aqueous solution
...Show More Authors

Scopus