A paraffin wax and copper foam matrix were used as a thermal energy storage material in the double passes air solar chimney (SC) collector to get ventilation effect through daytime and after sunset. Air SC collector was installed in the south wall of an insulated test room and tested with different working angles (30o, 45o and 60o). Different SC types were used; single pass, double passes flat plate collector and double pass thermal energy storage box collector (TESB). A computational model based on the finite volume method for transient tw dimensional domains was carried out to describe the heat transfer and storage in the thermal energy storage material of collector. Also, equivalent specific heat method was employed to describe the heat storage and release in the mushy zone. Experimental results referred to an increase in thermal conductivity of paraffin wax that supported by copper foam matrix more than ten times. While the ventilation effect was still active for hours after the sun set, depending on the heat storage amount. Maximum ventilation mass flow rate with TESB collector was recorded with value equals to 36.651 kg/hr., when the overall discharge coefficient that was calculated for the system equals to 0.371. Experimental results showed that the best working angle range was 45~60o, and the highest air to the collector approaching temperature appeared to the double passes flat plate collector. Results gave greater heat storage efficiency of (47)% when the maximum solar radiation was 780 W/m2 at 12.00pm, while the energy summation through duration charge time was 18460 kJ. Computational results, depending on the equivalent heat capacity method for heat storage or release from phase change material that supported by copper foam matrix, showed the behavior of paraffin wax melting and solidification situation through periodic for charge and released heat from the solar collector. Also, these results gave agreement approaching the experimental results for the heat storage in the combined heat storage material, with standard error of 16.8%.
Abstract
The current research sought to demonstrate the effect of material flow cost accounting on reducing products through the application of material flow cost accounting technique, which works on the optimal utilization of materials and energy and the reduction of environmental impacts.The research aims to clarify the knowledge foundations for material flow cost accounting, in addition to studying the material flow cost accounting technique that helps reduce the cost of products and make them environmentally friendly. To achieve this, the research relied on the descriptive approach with regard to the theoretical aspect of the resea
... Show MoreWA Shukur, journal of the college of basic education, 2011 The aim of this research is designing and implementing proposed steganographic method. The proposed steganographic method don’t use a specific type of digital media as a cover but it can use all types of digital media such as audio, all types of images, video and all types of files as a cover with the same of security, accuracy and quality of original data, considering that the size of embedded data must be smaller than the size of a cover. The proposed steganographic method hides embedded data at digital media without any changing and affecting the quality of the cover data. This means, the difference rate between cover before hiding operation and stego is zero. The proposed steg
... Show MoreThe current research aims to identify the impact of ambidextrous leadership behaviors on organizational energy in Al-Faris Company. The descriptive analytical method was used as a research approach. Adept leadership includes two dimensions (open leadership behaviors and closed leadership behaviors), and organizational energy includes three dimensions (emotional energy, physical energy, and cognitive energy ). The research sample included all the administrative leaders (General Manager, Associate General manager, Department Manager, Division Official ) in AL-Faris Company / the Iraqi Ministry of Industry. The researcher distributed (74) valid questionna
... Show MoreIn the present study, thin films of organic semiconductors Nickel PhthalocyanineTetrasulfonic Acid Tetrasodium Salt (NiPcTs) and inorganic semiconductor (CdS) prepared from the mixing of liquids for thesetwomaterials with different size ratios by the spin coating method on pre-patterned (Fluorine-doped Tin Oxide) FTO coated glass substrates and then the manufacture of solar cells. The properties of solar cells the study through the optical properties (absorption spectra, absorption coefficient, power gap) and electrical characteristics (continuous onductivity, Hall Effect and cell efficiency measurements) and Was obtainedThe efficiency of a multiple solar cell ranging from (0.16-13.2 %)
The invention relates to a coordinate measuring machine (CMM) for determining a measuring position of a probe. The AACMM isdepends on the robotkinematics (forward and reverse) in their measurementprinciple, i.e., using the AACMM links and joint angles todetermine the exact workspace or part coordinates. Hence, themeasurements are obtained using an AACMM will be extremely accurate and precise since that ismerely dependent on rigid structural parameters and the only source of measurement error is due to human operators. In this paper, a new AACMM design was proposed. The new AACMM design addresses common issues such as solving the complex kinematics, overcoming the workspace limitation, avoiding singularity, and eliminating the effects of
... Show MoreAbstract
Electric arc furnace applications in industry are related to position system of its pole, up and down of pole. The pole should be set the certain gap. These setting are needed to calibrate. It is done manually. In this research will proposed smart hydraulic to make this pole works as intelligent using proportional directional control valve. The output of this research will develop and improve the working of the electric arc furnace. This research requires study and design of the system to achieve the purpose and representation using Automation Studio software (AS), in addition to mathematically analyzed and where they were building a laboratory device similar to the design and conduct experiments to stud
... Show MoreRandom throwing of industrial waste has a significant impact on the environment unless it takes into account the conditions of engineered destroying and/or re-used. Taking the advantage of re-using waste materials in engineering projects represents a well-planned project in order to resolve a lot of engineering problems for some difficult soils. The objective of this study was to evaluate the capability and effects of Rubber Shreds (RS) from scrap torn belts towards improving the shear strength of soft clay. A direct shear tests were conducted on soft clay-RS mixture. The following parameters were investigated to study the influence of RS content, water content, normal stress, and dilation ratio. From experimental test results it was fou
... Show MoreSteganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreIn this work, laboratory experiments were carried out to verify direct contact membrane distillation system’s performance in highly saline water desalination. The study included the investigation of various operating conditions, like feed flow rate, temperature and concentration of NaCl solution and their impact on the permeation flux were discussed. 16 cm2 of a flat sheet membrane module with commercial poly-tetra-fluoroethylene (PTFE) membrane, which has 0.22 μm pore size, 96 µm thickness and 78% average porosity, was used. A high salt rejection factor was obtained greater than 99.9%, and the permeation flux up to 17.27 kg/m2.h was achieved at 65°C for hot feed side and 20°C for cold side stream.