This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important factor that has effect on the surface roughness. The optimal drilling factors that minimized the surface roughness are (20mm/min cutting speed, 0.2 mm/rev feed rate, and 10mm tool diameter).
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreLandSat Satellite ETM+ image have been analyzed to detect the different depths of regions inside the Tigris river in order to detect the regions that need to remove sedimentation in Baghdad in Iraq Country. The scene consisted of six bands (without the thermal band), It was captured in March ٢٠٠١. The variance in depth is determined by applying the rationing technique on the bands ٣ and ٥. GIS ٩. ١ program is used to apply the rationing technique and determined the results.
The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.
The aim of this work was to develop and validate a rapid and low cost method for estimation of ibuprofen in pharmaceutical suspensions using Reverse-Phase High Performance Liquid Chromatography. The proposed method was conducted and validated according to International Conference on Harmonization (ICH) requirements. The chromatographic parameters were as follows: column of octyldecylsilyl C18 with dimensions (150 × 4.6) mm, mobile phase composed of acetonitrile with phosphoric acid with a ratio of 50 to 50 each using isocratic mode, flow rate of 1.5 mL/min and injection volume of 5 μL. The detection was carried out using UV detector at 220 nm. The method was validated and showed short retention time for ibuprofen peak at 7.651 min, wit
... Show MoreThe second half of the last century witnessed a great scientific revolution that was able to bring about wide changes in various fields, including the field of physical education, which plays a fundamental role in the process of change for the better, and which knocked all the doors of modern science in various aspects and from this perspective we see that students have different capabilities And interests and motives, which require providing a differentiated education, and this depends on the necessity of knowing each student and on the school’s ability to know appropriate strategies for teaching each student so there is no single way to teach so the research problem comes in experimenting with an educational method that works on
... Show MoreIn this research we study a variance component model, Which is the one of the most important models widely used in the analysis of the data, this model is one type of a multilevel models, and it is considered as linear models , there are three types of linear variance component models ,Fixed effect of linear variance component model, Random effect of linear variance component model and Mixed effect of linear variance component model . In this paper we will examine the model of mixed effect of linear variance component model with one –way random effect ,and the mixed model is a mixture of fixed effect and random effect in the same model, where it contains the parameter (μ) and treatment effect (τi ) which has
... Show MoreThe increasing Global Competitive and the continuous improvement in information technology has led the way to the development of the modern systems and using modern techniques. One of these techniques is benchmarking style and Total Quality Management all of them are used to improve the production process and target rid from the losts on the other side.
The Benchmarking style has become a very important for all the industrial systems and the serving systems as well. And an instrument to improve their performance specially those which are suffering from the highness of the costs or waste in time on the other side.
This study aims to depend on virtual Benchmarking style in the eval
... Show More