This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important factor that has effect on the surface roughness. The optimal drilling factors that minimized the surface roughness are (20mm/min cutting speed, 0.2 mm/rev feed rate, and 10mm tool diameter).
The implementation of technology in the provision of public services and communication to citizens, which is commonly referred to as e-government, has brought multitude of benefits, including enhanced efficiency, accessibility, and transparency. Nevertheless, this approach also presents particular security concerns, such as cyber threats, data breaches, and access control. One technology that can aid in mitigating the effects of security vulnerabilities within e-government is permissioned blockchain. This work examines the performance of the hyperledger fabric private blockchain under high transaction loads by analyzing two scenarios that involve six organizations as case studies. Several parameters, such as transaction send ra
... Show MoreOffline Arabic handwritten recognition lies in a major field of challenge due to the changing styles of writing from one individual to another. It is difficult to recognize the Arabic handwritten because of the same appearance of the different characters. In this paper a proposed method for Offline Arabic handwritten recognition. The proposed method for recognition hand-written Arabic word without segmentation to sub letters based on feature extraction scale invariant feature transform (SIFT) and support vector machines (SVMs) to enhance the recognition accuracy. The proposed method experimented using (AHDB) database. The experiment result show (99.08) recognition rate.
In computer vision, visual object tracking is a significant task for monitoring
applications. Tracking of object type is a matching trouble. In object tracking, one
main difficulty is to select features and build models which are convenient for
distinguishing and tracing the target. The suggested system for continuous features
descriptor and matching in video has three steps. Firstly, apply wavelet transform on
image using Haar filter. Secondly interest points were detected from wavelet image
using features from accelerated segment test (FAST) corner detection. Thirdly those
points were descripted using Speeded Up Robust Features (SURF). The algorithm
of Speeded Up Robust Features (SURF) has been employed and impl
A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreThe Paleocene-Eocene Thermal Maximum (PETM) event, which represented a sudden and abnormal rise in temperature during the early Cenozoic Era, is regarded as one of the most important global geologic phenomena. Two important index microfossils (nannoplankton and Ostracoda) were utilised to understand and predict the paleoenvironment and describe the changes during this period. The basis of the study was 12 cutting samples taken from Aaliji and the lower part of Jaddala formations of a subsurface section of (Ba-8) borehole in central Iraq. Some geophysical data were used to determine the upper and lower contacts of the Aaliji Formation and define the shale rate in the studied formations. The micropaleontologic investigation reveals
... Show MoreFor design purposes, it`s necessary to know the compression rate of soil layers which might be happened when it`s subjected to effective stresses. Also, it`s essential to know the rate of flow through soil mass specially for the design of marine structures or earth embankment. These two important behavior could be predicted from the coefficient of consolidation (Cv) and the coefficient of permeability (k). This study shows the effect of cutback asphalt stabilization on Cv and k and other compressibility factors, the investigation was done for silty clay samples, specimens were prepared by mixing the soil with different percentage of asphalt from (0-10)% and subjected to one-dimensional consolidation test of 50mm diameter and 20mm height wer
... Show MoreThe present study aimed to examine the effect of endosulfan insecticide on some molecular and biochemical parameters in white mice. Thirty mice were separated randomly into three groups for treatment with endosulfan. One group (G1) served as the control, while the other two groups received intraperitoneal injections of endosulfan G2 (3 mg/kg) and G3 (17 mg/kg) twice a week for 21 and 45 days, respectively. A biochemical study by measuring liver function parameters, including (alanine aminotransferase (ALT) and aspartate aminotransferase (AST)) and kidney function parameters, including (Blood Urea and Creatinine) and malondialdehyde (MDA), catalase activity (CAT). This study also tested DNA damage by comet assay (normal%, low%, med
... Show MoreThe shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show More