Preferred Language
Articles
/
alkej-36
Comparative Study of the Mechanical Properties of (FS) and MIG Welded Joint in (AA7020-T6) Aluminum Alloy
...Show More Authors

A comprehensive practical study of typical mechanical properties of welded Aluminum alloy AA7020-T6 (Al-Mg-Zn), adopting friction stir welding (FSW) technique and conventional metal inert gas (MIG) technique, is well achieved in this work for real comparison purposes. The essences of present output findings were concentrated upon the FSW samples in respect to that MIG ones which can be summarized in the increase of the ultimate tensile strength for FSW was 340 MPa while it was 232 MPa for MIG welding, where it was for base metal 400 MPa. The minimum microhardness value for FSW was recorded at HAZ and it was 133 HV0.05 while it was 70 HV0.05 for MIG weld at the welding metal. The FSW produce 2470 N higher than MIG welding in the bending test and a decrease in the localized grain size for FSW in the stirred zone 12 µm and it was 37 µm for MIG while it was 32 µm for the base metal.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Morphology and Mechanical Properties of (Epoxy/PVC) Blend
...Show More Authors

Abstract

     In this research, the morphology and mechanical properties of (Epoxy/PVC) blend were investigated.  (EP/PVC) blend was prepared by manual mixing of epoxy resin with different weight ratios of (Poly vinyl chloride (PVC) after dissolving it in cyclohexanon). Five sheets of polymer blends in wt% included (0%, 5%, 10%, 15% and 20%) of PVC were prepared at room temperature. Tests were carried out to study some mechanical properties for these blends and compared with the properties of pure epoxy. The morphology of the prepared materials was examined to study the compatibility nature between the two polymers under work. It was found that the best ratio of addition is (20%) of PVC.

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties and Corrosion Behavior of Low Carbon Steel Weldments
...Show More Authors

This research involves studying the mechanical properties and corrosion behavior of “low carbon steel” (0.077wt% C) before and after welding using Arc, MIG and TIG welding. The mechanical properties include testing of microhardness, tensile strength, the results indicate that microhardness of TIG, MIG welding is more than arc welding, while tensile strength in arc welding more than TIG and MIG.

The corrosion behavior of low carbon weldments was performed by potentiostat at scan rate 3mV.sec-1 in 3.5% NaCl to show the polarization resistance and calculate the corrosion rate from data of linear polarization by “Tafel extrapolation method”. The results indicate that the TIG welding increase the corrosion current d

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Laser Peening on Aluminum Alloy 7049 Using Black Paint Surface Coating
...Show More Authors

Abstract

Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable   bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present  work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life  improvement factor (FLIF)  for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated  fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav

... Show More
View Publication Preview PDF
Publication Date
Fri Dec 31 2021
Journal Name
Iraqi Journal Of Laser
Parametric Optimization for Fatigue Life of 6061-T6 Aluminum Thin Sheets Processed with High-Speed Laser Shock Peening
...Show More Authors

Abstract: Aluminum alloys grade 6061-T6 are characterized by their excellent properties and processing characteristics which make them ideal for varieties of industrial applications under cyclic loading, aluminum alloys show less fatigue life than steel alloys of similar strength. In the current study, a nanosecond fiber laser of maximum pulse energy up to 9.9 mJ was used to apply laser shock peening process (LSP) on aluminum thin sheets to introduce residual stresses in order to enhance fatigue life under cyclic loading Box-Behnken design (BBD) based on the design of experiments (DOE) was employed in this study for experimental design data analysis, model building and optimization The effect of working parameters spot size (ω), scannin

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Studying the Effect of Addition Particles of Alumina (Al2O3) and Zirconia (ZrO2), on Some Mechanical Properties for Matrix Composites (Al-Si-Mg) Alloy
...Show More Authors

This study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.

After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Modeling of Bending Properties of Stainless Steel 304 Sheets Welded by Tungsten Inert Gas Welding Process
...Show More Authors

In this research, the effects of both current and argon gas pressure on the bending properties of welded joints were studied. Using the possible ranges of welding gas pressures and currents, Tungsten inert gas welding (TIG) of stainless steel (304) sheet was used to obtain their influence on the maximum bending force of the (TIG) welded joints. Design of experiment (DOE) ‘version 10' was used to determine the design matrix of experiments depending on the used levels of the input factors. Response surface methodology (RSM) technique was used to obtain an empirical mathematical model for the maximum bending force as a function of welding parameters (Current and Argon gas pressure). Also, the analysis of variance (ANOVA) was used to verif

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Development the Mechanical Properties of (AL-Li-Cu) Alloy
...Show More Authors

The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties of Burnished Steel AISI 1008
...Show More Authors

Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Mar 18 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of optimal shot peening time on fatigue life for aluminum alloy 6061-T651
...Show More Authors

The compressive residual stresses generated by shot peening, is increased in a direct proportional way with shot peening time (SPT). For each metal, there is an optimum shot peening time (O.S.T) which gives the optimum fatigue life. This paper experimentally studied to optimize shot peening time of aluminium alloy 6061-T651 as well as using of and analysis of variance (ANOVA).

Two types of fatigue test specimens’ configuration were used, one without notch (smooth) and the other with a notch radius (1,25mm), each type was shot peened at different time. The (O.S.T) was experimentally estimated  to be 8 minutes reaching the surface stresses at maximum peak of -184.94 MPa.

A response surface methodology (RSM) is presen

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Improving Wear Properties of 392 Al Alloy Using Centrifugal Casting
...Show More Authors

The microstructure and wear properties of 392 Al alloy with different Mg contents were studied using centrifugal casting. All melted alloys were heated to 800 ºC and poured into the preheated centrifugal casting mold (200-250 ºC) at different mould rotational speeds (1500, 1900 and 2300 r.p.m).  It is clear from the results obtained that wear rate was dependent on the Mg content, applied load and mould rotational speed. Furthermore, wear test showed that the minimum wear rate was found in the inner layer of produced rings at mould rotational speed of 1900 r.p.m and Mg content of 5%.

 

View Publication Preview PDF