Preferred Language
Articles
/
alkej-349
Simulation Model of Wind Turbine Power Control System with Fuzzy Regulation by Mamdani and Larsen Algorithms
...Show More Authors

Abstract 

     The aim of this work is to create a power control system for wind turbines based on fuzzy logic. Three power control loop was considered including: changing the pitch angle of  the blade, changing the length of the blade and turning the nacelle. The stochastic law was given for changes and instant inaccurate assessment of wind conditions changes. Two different algorithms were used for fuzzy inference in the control loop, the Mamdani and Larsen algorithms. These two different algorithms are materialized and developed in this study in Matlab-Fuzzy logic toolbox which has been practically implemented using necessary intelligent control system in electrical engineering and renewable energy concepts.

     A comparison was done to access the functionality of  the developed power control system of fuzzy logic and classical control system with PID – control. It can be concluded that the power control system of fuzzy logic allows to accurately maintain production under the control target function for each work area. When switching operation of wind turbines, it has the distinction that from 13.5 m/s  to another wind velocity value, there is no overshoot  and a typical of classical control systems, and when the wind velocity V is less than13.5 m / s, the pitch angle of the blades should be slightly greater than zero, and if it has increased by 5 °, then blade length should be minimal as possible. Simulation program proved the possibility of effective power regulation for the large wind turbines controller fuzzy type on the basis of knowledge production "if - then" rules, which were shown to be effective on these wind turbines control.

 Keywords: Mamdani and Larsen algorithms fuzzy inference, Matlab Fuzzy Logic ,Fuzzy-PID controllers, Wind turbine.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
REVIEW THE ASSESSMENT OF EFFECTS OF LOST TIME INJURIES IN AN INDUSTRIAL SYSTEM BY USING AN EXPLANATORY PROGRAM
...Show More Authors

Health and safety problem can be described by statistics it can only be understood by knowing and feeling the pain, suffering, and depression. Health and safety has a legal responsibility to protect it for everyone who can affect in the workplace. This includes manufacturers, suppliers, designers and controllers of work places and employees. Work injury is one of the major problems in manufacturing and production systems industries; it is reduced production efficiency and affects the cost. To gain flexibility from a traditional manufacturing system and production efficiency, this paper is about the application of estimating technology to preview and synthesis of Lost Time of Work Injuries in industry systems aims to provide a safe workin

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 30 2025
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Solar Granulation Dynamics Using Optical Correction Techniques
...Show More Authors

High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Sep 29 2021
Journal Name
Al-khwarizmi Engineering Journal
Simulation of a Self-Balancing Platform on the Mobile Car
...Show More Authors

        In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-derivative (PID) co

... Show More
Preview PDF
Scopus Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Engineering
Three-Dimensional Explicit Finite Element Simulation of Piled-Raft Foundation
...Show More Authors

This paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.

The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue May 23 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Ice Melting Using the Finite Volume Method
...Show More Authors

The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 06 2021
Journal Name
Journal Of Petroleum Research And Studies
Simulation of underground storage / UM EL-Radhuma Formation-Ratawi field
...Show More Authors

The aim of this study is to investigate the feasibility of underground storage of gas in Um El-Radhuma formation /Ratawi field. This formation is an aquifer consisting of a high permeable dolomitebeds overlain by impermeable anhydrite bed of Rus formation. Interactive petrophysics (IP), Petrel REand Eclipse 100 softwares were used to conduct a well log interpretation, build a reservoir simulationmodel and predict the reservoir behavior during storage respectively. A black oil, three dimensionaland two phase fluid model has been used. The results showed that the upper part of Um El-Radhumaformation is suitable for underground gas storage, because of the seal of its cap rock and capability ofreserving gas in the reservoir. It was foun

... Show More
View Publication
Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Journal Of Engineering
Numerical Simulation of Thermal-Hydrodynamic Behavior within Solar Air Collector
...Show More Authors

Solar collectors, in general, are utilized to convert the solar energy into heat energy, where it is employed to generate electricity. The non-concentrating solar collector with a circular shape was adopted in the present study. Ambient air is heated under a translucent roof where buoyant air is drawn from outside periphery towards the collector center (tower base). The present study is aimed to predict and visualize the thermal-hydrodynamic behavior for airflow under inclined roof of the solar air collector, SAC. Three-dimensional of the SAC model using the re-normalization group, RNG, k−ε turbulence viscus model is simulated. The simulation was carried out by using ANSYS-FLUENT 14.5. The simulation

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Oct 01 2021
Journal Name
International Journal Of Geomate
NONLINEAR SIMULATION ANALYSIS OF TAPERED REINFORCED CONCRETE COLUMN (SOLID AND HOLLOW) BEHAVIOR UNDER AXIAL LOAD
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Journal Of Engineering
The Design and Simulation of a Novel Optical Adder Depending on Optical Tri-state Gates
...Show More Authors

Essential approaches involving photons are among the most common uses of parallel optical computation due to their recent invention, ease of production, and low cost. As a result, most researchers have concentrated their efforts on it. The Basic Arithmetic Unit BAU is built using a three-step approach that uses optical gates with three states to configure the circuitry for addition, subtraction, and multiplication. This is a new optical computing method based on the usage of a radix of (2): a binary number with a signed-digit (BSD) system that includes the numbers -1, 0, and 1. Light with horizontal polarization (LHP) (↔), light with no intensity (LNI) (⥀), and light with vertical polarization (LVP) (↨) is represen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 p

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Crossref