This research deals with the effects of welding variables using MIG/MAG spot by using Argon (Ar) gas and CO2 to show their effect on the mechanical characteristics and microstructure of low alloy steel type DIN15Mo3 and determine the optimum condition for the process of welding ; current & time. The results show the possibility of using CO2 and also Ar in low alloy steel welding with a little decrease in the shear force of not more than 13% for 4mm thickness and time 2sec. The shear force increased when using Ar instead of CO2 to be , The shear force reach 36KN when using Ar at 2mm thickness time of 8 sec and current of 220 Amp. , when used CO2 instead of Ar decreased shear force to 31KN reach decrease rate 13% while for a thikness of 4mm , time 8sec and acurrent of 290Amp. it was 37.9kN , when used CO2 became 30.9KN decrease rate 18.5% and for a thikness of 6mm , time 8 sec and 450Amp. current it was 39 KN when used CO2 it become 37KN redusing rate 5.20% .The diameter and penetration of welding have straight relation with the increase of current and time.
Metal oxide nanoparticles demonstrate uniqueness in various technical applications due to their suitable physiochemical properties. In particular, yttrium oxide nanoparticle(Y2O3NPs) is familiar for technical applications because of its higher dielectric constant and thermal stability. It is widely used as a host material for a variety of rare-earth dopants, biological imaging, and photodynamic therapies. In this investigation, yttrium oxide nanoparticles (Y2O3NPs) was used as an ecofriendly corrosion inhibitor through the use of scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR), UV-Visible spectroscopy, X-ray diffraction (XRD), and energy dispersive X-ray spe
... Show MoreThis study is concerned with the effect of Deep Cryogenic Treatment (DCT) at liquid nitrogen temperature (-196 o C) on the mechanical properties and performance of low carbon steel (A858). The tests specimens were divided in to two groups, the first group was subjected to the conventional heat treatment of normalizing, and the second group was also normalized then subjected to (DCT). The results have shown that after (DCT), the Hardness, Tensile properties and the impact energy absorbed were all slightly increased. However the fatigue test showed some positive improvement in fatigue limit by 20(N/mm2 ), and the volume wear rates at different loads were significantly decreased after (DCT). The changes in microstructure due to (DCT) were c
... Show MoreThe effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p
... Show MoreThe present research aims to study the effect of friction stir welding (FSW) parameters on temperature distribution and tensile strength of aluminum 6061-T6. Rotational and traverse speeds used were (500,1000,1400 rpm) and (14,40,112 mm/min) respectively. Results of mechanical tests showed that using 500rpm and 14mm/min speed give the best strength. A three- dimensional fully coupled thermal-stress finite element model via ANSYS software has been developed. The Rate dependent Johnson-Cook relation was utilized for elasto-plastic work deformations. Heat-transfer is formulated using a moving heat source, and later used the transient temperature outputs from the thermal analysis to determine equivalent stresses in the welde
... Show MoreThe inhibitive power of Polyvinyl Alcohol (PVA) was investigated toward the corrosion of carbon steel in 0.2N H2SO4 solution in the temperature range of 30-60˚C and PVA concentration range of 150-2000 ppm.
The corrosion rate was measured using both the weight loss and the electrochemical techniques. The weight loss results showed that PVA could serve as a corrosion inhibitor but its inhibition power was found to be low for the corrosion of carbon steel in the acidic media. Electrochemical analysis of the corrosion process of carbon steel in an electrochemical corrosion cell was investigated using 3-Electrode corrosion cell. Polarization technique was used for carbon steel corrosion in 0.2N H
The aim of this research is to calculate mass transfer coefficient, kd, during cathodic protection of low carbon steel in neutral seawater (3.5% W/V NaCl in distilled water with pH = 7). Two types of cathodic protection were used:
First: Sacrificial anode cathodic protection (SACP) were a pipeline of steel carrying seawater using zinc as a sacrificial anode and with variable temperatures ranged (0 – 45oC) and volumetric flow rate ranged (5 – 900 lit/hr). It was found that the kd increases with increasing temperature and volumetric flow rate of seawater, where kd ranged (0.24×10-6 – 41.6×10-6 m/s).
Second: Impressed current cathodic pr
... Show MoreA theoretical study was done in this work for Fatigue , Fatigue Crack Growth (FCG) and stress factor intensity range for steel . It also includes Generalized Paris Equation and the fulfillment of his equation which promises that there is a relation between parameters C and n . Usig Simple Paris Equation through which we concluded the practical values of C and n and compared them with the theoretical values which have been concluded by Generalized Paris Equation . The value of da/dN and ∆K for every material and sample were concluded and compared with the data which was used in
... Show MoreThis research aims to modify the components of stainless steel alloy by the method of surface engineering through the single diffusion coating technique in order to obtain new alloys with high efficiency in resisting harsh environmental conditions. Steam a mixture of sodium chloride ( ) and sodium sulfate ( ) at a temperature of 900 and then compare it with the base alloy. The results showed that the alloys produced in this way are very efficient. The results showed that the aluminum coating showed high efficiency in resisting oxidation and provided better protection for a longer time compared to the uncoated alloy due to the oxide crust layer formed with high adhesion as well as the aluminum-rich phases, whether the phase
... Show MoreThis paper is focused on studying the effect of cutting parameters (spindle speed, feed and depth of cut) on the response (temperature and tool life) during turning process. The inserts used in this study are carbide inserts coated with TiAlN (Titanum, Aluminium and Nitride) for machining a shaft of stainless steel 316L. Finite difference method was used to find the temperature distribution. The experimental results were done using infrared camera while the simulation process was performed using Matlab software package. The results showed that the maximum difference between the experimental and simulation results was equal to 19.3 , so, a good agreement between the experimental and simulation results was achieved. Tool life w
... Show More