The oxidative degradation of Orange G dye by nanosized CeO2 catalyst has been performed in this study. The catalyst was prepared by precipitation method. Various characterization techniques were carried out to study the physical and chemical properties of the synthesized catalyst. The XRD result confirms well the formation of CeO2 cubic phase. The FTIR result showed the effect of calcination temperature for CeO2 was clearly observed due to reduction in band intensity compared to uncalcined Ce nitrate sample. Meanwhile, the diffused reflection spectra recorded reflection spectra at 414 nm with an energy gap of 3.2 ev. The decolorization of Orange G dye by oxidation process were carried out under various conditions such as, the effects of H2O2 dosage , pH, catalyst dosage and the temperature of reaction. The optimum conditions for the highest decolorization efficiency (100%) were achieved at 10 mg/L of orange G dye with catalyst dosage of 1.5 g/L, pH 2, reaction temperature of 65 °C and 0.1 mL H2O2.
The study involved preparing a new compound by combining between 2- hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries
... Show MoreThe study involved preparing a new compound by combining between 2-hydroxybenzaldehyde and (Z)-3-hydrazineylideneindolin-2-one resulting in Schiff bases and metal ions: Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) forming stable minerals-based-Schiff complexes. The formation of resulting Schiff bases is detected spectrally using LC-Mss which gave corresponding results with theoretical results, 1H-NMR proves the founding of N=CH signal, FT-IR indicates the occurrence of imine band and UV-VIs mean is proved the ligand formation. On the other hand, minerals-based-Schiff was characterized using the same spectral means that relied with ligand (Schiff bases). Those means gave satisfactory results and proved the suggested distinguishable geometries.
... Show MoreThe synthesis of ligands with N2S2 donor sets that include imine, an amide, thioether, thiolate moieties and their metal complexes were achieved. The new Schiff-base ligands; N-(2-((2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio)-acetamide (H2L1) and N-(2-((2,4-di-p-tolyl-3-azabicyclo[3.3.1]nonan-9-ylidene)amino)ethyl)-2-((2-mercaptoethyl)thio) acetamide (H2L2) were obtained from the reaction of amine precursors with 1,4-dithian-2-one in the presence of triethylamine as a base in the CHCl3 medium. Complexes of the general formula K2<
A series of Schiff base-bearing salicylaldehyde moiety compounds (1-4) had been designed, synthesized, subjected to insilico ADMET prediction, molecular docking, characterization by FT-IR, and CHNS analysis techniques, and finally to their Anti-inflammatory profile using cyclooxygenase fluorescence inhibitor screening assay methods along with standard drugs, celecoxib, and diclofenac. The ADMET studies were used to predict which compounds would be suitable for oral administration, as well as absorption sites, bioavailability, TPSA, and drug likeness. According to the results of ADME data, all of the produced chemicals can be absorbed through the GIT and have passed Lipinski’s rule of five. Through molecular docking with PyRx 0.8, these
... Show MoreDue to its various resistance mechanisms, Pseudomonas aeruginosa is the most prevalent opportunistic infection that kills hospitalized patients. Thus, therapeutic options become limited. Objective: The study aimed to estimate the antibiofilm effectiveness of Conocarpus erectus leaf extracts against MDR P. aeruginosa isolates and examines pelA and algD gene expression. Subjects and Methods: One hundred-fifty clinical samples were collected from five Baghdad hospitals between September 2021 and January 2022. Samples were grown on different mediums. Despite cetrimide agar's ability to detect P. aeruginosa, only 83 isolates developed at 42°C. VITEK 2 compact system identification followed. This study examined 83 of P. aeruginosa isolates for r
... Show MoreThin films of vanadium oxide nanoparticles doped with different concentrations of europium oxide (2, 4, 6, and 8) wt % are deposited on glass and Si substrates with orientation (111) utilizing by pulsed laser deposition technique using Nd:YAG laser that has a wavelength of 1064 nm, average frequency of 6 Hz and pulse duration of 10 ns. The films were annealed in air at 300 °C for two hours, then the structural, morphological and optical properties are characterized using x-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and UV-Vis spectroscopy respectively. The X-ray diffraction results of V2O5:Eu2O3 exhibit that the film has apolycrystalline monoclinic V2O5 and triclinic V4O7 phases. The FESEM image shows a h
... Show MoreThermal conductivity for epoxy composites filled with Al2O3 and Fe2O3 are
calculated, it found that increasing the weight ratio of Al2O3 and Fe2O3 lead to
increase in the values of thermal conductivity, but the epoxy composite filled with
Fe2O3, have values of thermal conductivity less than for epoxy composite filled with
Al2O3, for the same weight ratio. Also thermal conductivity calculated for epoxy
composites by contact to every two specimens (like sandwich) content same weight
ratio of alumina-oxide and ferrite-oxide, its found that the value of thermal
conductivity lays between the values of epoxy filled Al2O3 and of epoxy filled Fe2O3
The work include synthesis of nanocomposites (X / S / Ag) based on blend from Xanthan gum / sodium alginate polymers (X / S) with different loading of synthesized silver nanoparticales (0.01, 0.03 and 0.05 wt%) were added to the blend. The silver nanoparticles were prepared by reduction method and were characterized and analyzed using X-ray diffraction (XRD) and Atomic force microscope (AFM). XRD study showed the presence nanoparticle of silver with crystalline nature and face-centered cubic (FCC) structure and an average size of nanoparticles ranging from 32 to 37 nm. The surface study was performed using AFM which showed a fairly uniform shape to the nanocomposites and a spherical nature for the silver nanoparticles. The nanocomposite exh
... Show More