Bacterial water pollution is a genuine general wellbeing concern since it causes various maladies. Antimicrobial nanofibers can be integrated by incorporating nanobiocides, for example, silver nanoparticles into nanofibers. Nylon 6 was dissolved in formic acid at a concentration of (25 wt. %) and tough antibacterial (AgNO3/Nylon) nanofibers were produced utilizing electrospinning system. Polymer solution was tested before accomplishing electrospinning process to acquire its surface tension, electric conductivity and viscosity, where every one of those parameters increased relatively with increasing concentration of (AgNO3) additions. SEM and EDX spectra were utilized to focus on the morphology, surface elemental membrane, fibers and porosize diameters. The resulted nanofiber membrane has an average fiber diameter of 139 nm for pure nylon 6 and 247 nm for (1.2 wt. % AgNO3/Nylon). The resultant polymer membrane was then tested for their ability to destroy microorganisms in water; antimicrobial tests showed that the prepared nanofibers have a high bactericidal effect against Escherichia Coli Bacteria with inhibition zone (10 mm) and antibacterial activity (99%). Likewise, these results highlight the potential utilization of these nanofibrous mats as antimicrobial agents.
Colloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution be
... Show MoreBiodegradation is utilizing microorganisms to degrade materials into products that are safe for the
environment, such as carbon dioxide, water, and biomass. The current study aims to isolate and characterize
bacteria with polyethylene terephthalate (PET) degradation ability isolated from Shatt al-Arab water and
sewage from Basra, the bacteria were identified as Klebsiella pneumonia. According to the findings, the
isolates showed a highly significant difference in degradation of PET (24% during 7 days) and the percent of
degradation increased to 46% at 4 weeks compared to the control. The study also involved determining the
optimum temperature of K. pneumonia growth, which was 37°C, while the preferred
The present work aims to improve the flux of forward osmosis with the use of Thin Film Composite membrane by reducing the effect of polarization on draw solution (brine solution) side.This study was conducted in two parts. The first is under the effect of polarization in which the flux and the water permeability coefficient (A) were calculated. In the second part of the study the experiments were repeated using a circulating pump at various speeds to make turbulence and reduce the effect of polarization on the brine solution side.
A model capable of predicting water permeability coefficient has been derived, and this is given by the following equations:
Z=Z0 +C.R.T/9.8(d2/D2+1) [Exp. [-9.8(d
Abstract: Despite the distinct features of the continuous wave (CW) Terahertz (THz) emitter using photomixing technique, it suffers from the relatively low radiation output power. Therefore, one of effective ways to improve the photomixer emitter performance was using nanodimensions electrodes inside the optical active region of the device. Due to the nanodimension sizes and good electrical conductivity of silver nanowires (Ag-NWs), they have been exploited as THz emitter electrodes. The excited surface plasmon polariton waves (SPPs) on the surface of nanowire enhances the incident excitation signal. Therefore, the photomixer based Ag-NW compared to conventional one significantly exhibits higher THz output signal. In thi
... Show MoreSource, sedimentation, coagulation, flocculation, filter, and tank are parts of a water treatment plant. As a result, some issues threaten the process and affect the drinking water quality, which is required to provide clean drinking water according to special standards and international and local specifications, determined by laboratory results from physical, chemical, and biological tests. In order to keep the water safe for drinking, it is necessary to analyze the risks and assess the pollution that occurs in every part of the plant. The method is carried out in a common way, which is monitoring through laboratory tests, and it is among the standards of the global and local health regulators
The effects of temperature on an exotic aquatic snail Pomacea canaliculata (Lamarck, 1819) collected from the Shatt Al-Arab intertidal zone were investigated. A series of laboratory experiments were conducted during the summer period of 2017. Individuals of new born snails hatched in the laboratory from adult snails were collected from Shatt Al-Arab intertidal zone, and subjected to five fixed temperatures: 15, 25, 35, 40 and 45 Cº, after short term thermal acclimation. The heartbeats (HB) were counted at each temperature level. The results showed significant direct increase of HB from 15 Cº (19.8 HB/min) up to 25 Cº (76 HB/min) (P<0.05) as well as from 25 Cº to 35 Cº (93 HB/min). At 40 Cº the snail HB
... Show MoreA laboratory experiment has been carried out in the College of Science-University of Salahaddin to study the effect of different levels (0,5,10 and 15%) and sizes(250 and 1000µm) of walnut seeds residues and (160mg.kg-1) phosphorus fertilization on the concentration of phosphorus availability and alkaline phosphatase activity in calcareous soil during 15 and 30 days period of incubation, the experimental design in factorial complet randomize design (C.R.D) with three replications. The results indicated that the application of different levels of walnut seed residues decreases the concentration of phosphorus availability and alkaline phosphatase activity, however the results revealed that combination between levels and sizes o
... Show MoreA study was conducted to evaluate the antibacterial effect of Phyllanthus emblica extract (ethanol:methanol, 1:1) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli at different concentrations, i.e. 0.625, 1.25, 2.50, 5.0, 10.0 and 20.0 mg/ml. The antibacterial activity was determined by the agar well diffusion method to investigate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The alcoholic extract of Phyllanthus emblica had the highest antibacterial activity at 20 mg/ml and 5 mg/ml except for Pseudomonas aeruginosa where the value of inhibition was between 20 and 10 mg/ml. The MIC concentrations were mostly very high and ranged from 5 to 1.25 mg/ml, while the MBC range fro
... Show MoreIn this paper some chalcones (C1-C8) are prepared based on the reaction of one mole of substituted acetophenone with one mole of substituted benzaldehydes in the presence of (40%) sodium hydroxide as a base. Pyrazolines (P1–P8) are prepared from the reaction of chalcones (C1-C8) with hydrazine hydrate. Isoxazoline (I1-I8) is prepared from the reaction of chalcones (C1-C8) with hydroxyl amine hydrochloride in the presence of (10%) sodium hydroxide as a base. These compounds are characterized by using various physical and spectral methods. The compounds are screened for their in vitro antibacterial activity using gram-positive bacteria and gram-negative bacteria. Several derivatives of pyrazolines and isoxazolines are produced well to moder
... Show More