This paper presents a vibration suppression control design of cantilever beam using two piezoelectric patches. One patch was used as an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state estimation error is proved bounded. An optimal LQR controller is designed then using the estimated states with the sliding mode observer, to suppress the vibration of a smart cantilever beam via the piezoelectric elements. The control spillover problem was avoided, by deriving an avoidance condition, to ensure the asymptotic stability for the proposed vibration control design. The numerical simulations were achieved to test the vibration attenuation ability of the proposed optimal control. For 15 mm initial tip displacement, the piezoelectric actuator found able to reduce the tip displacement to about 0.1 mm after 4s, while it was 1.5 mm in the open loop case. The current experimental results showed a good performance of the proposed LQR control law and the sliding mode observer, as well a good agreement with theoretical results.
In this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model during di
... Show MoreIn this paper, we implement and examine a Simulink model with electroencephalography (EEG) to control many actuators based on brain waves. This will be in great demand since it will be useful for certain individuals who are unable to access some control units that need direct contact with humans. In the beginning, ten volunteers of a wide range of (20-66) participated in this study, and the statistical measurements were first calculated for all eight channels. Then the number of channels was reduced by half according to the activation of brain regions within the utilized protocol and the processing time also decreased. Consequently, four of the participants (three males and one female) were chosen to examine the Simulink model duri
... Show MoreIn this investigation, Rayleigh–Ritz method is used to calculate the natural frequencies of rectangular isotropic and laminated symmetric and anti-symmetric cross and angle ply composite plate with general elastic supports along its edges. Each of the admissible functions here is composed of a trigonometric function and an arbitrary continuous function that is introduced to ensure the sufficient smoothness of the so-called residual displacement function at the edges. Perhaps more importantly, this study has developed a general approach for deriving a complete set of admissible functions that can be applied to various boundary conditions. Several numerical examples are studied to demonstrate the accuracy and convergence of the current s
... Show MoreDensity Functional Theory (DFT) method of the type (B3LYP) and a Gaussian basis set (6-311G) were applied for calculating the vibration frequencies and absorption intensities for normal coordinates (3N-6) at the equilibrium geometry of the Di and Tetra-rings layer (6, 0) zigzag single wall carbon nanotubes (SWCNTs) by using Gaussian-09 program. Both were found to have the same symmetry of D6d point group with C--C bond alternation in all tube rings (for axial bonds, which are the vertical C--Ca bonds in rings layer and for circumferential bonds C—Cc in the outer and mid rings bonds). Assignments of the modes of vibration IR active and inactive vibration frequ
... Show MoreQuantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.
The aerodynamic and elastic forces may cause an oscillation of the structure such as the high frequency of the airfoil surfaces and the dynamic instability occurring in an aircraft in flight and failure may occur at a speed called flutter speed. In this work, analytical and numerical investigations of flutter limits of thin plates have been carried out. The flutter speed of rectangular plates were obtained and compared with some published results. Different design parameters were investigated such as aspect ratio, thickness and their effects on flutter velocity. It was found that the structural mode shape plays an important role in the determination of the flutter speed and the coupling between the bending and torsional mode is the main
... Show MoreA new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.
In this work, a solid core photonic crystal fibre (SC-PCF) has been designed with endlessly single mode of which both centerd core and holes in the cladding are organized by circles. The designed SC-PCF has a single solid centerd core which is ringed by a six rings hexagonal cladding. The computation of SC-PCF is achieved by using the finite element method (FEM) with perfectly matched layer (PML) boundary condition. All the designed factors like dimensions and distance of both core and cladding areas have varied with an optimized structure. After ending the numerical calculation, the results shows that there are a link between the air hols in the cladding , and the different normaliz
... Show More