This paper presents a vibration suppression control design of cantilever beam using two piezoelectric patches. One patch was used as an actuator element, while the other was used as a sensor. The controller design was designed via the balance realization reduction method to elect the reduced order model that is most controllable and observable. the sliding mode observer was designed to estimate six states from the reduced order model but three states are only used in the control law. Estimating a number of states larger than that used is in order to increase the estimation accuracy. Moreover, the state estimation error is proved bounded. An optimal LQR controller is designed then using the estimated states with the sliding mode observer, to suppress the vibration of a smart cantilever beam via the piezoelectric elements. The control spillover problem was avoided, by deriving an avoidance condition, to ensure the asymptotic stability for the proposed vibration control design. The numerical simulations were achieved to test the vibration attenuation ability of the proposed optimal control. For 15 mm initial tip displacement, the piezoelectric actuator found able to reduce the tip displacement to about 0.1 mm after 4s, while it was 1.5 mm in the open loop case. The current experimental results showed a good performance of the proposed LQR control law and the sliding mode observer, as well a good agreement with theoretical results.
The possibility of predicting the mass transfer controlled CaCO3 scale removal rate has been investigated.
Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.
Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreAbstract
Anaerobic digestion process of organic materials is biochemical decomposition process done by two types of digestion bacteria in the absence of oxygen resulting in the biogas production, which is produced as a waste product of digestion. The first type of bacteria is known as acidogenic which converts organic waste to fatty acids. The second type of bacteria is called methane creators or methanogenic which transforms the fatty acids to biogas (CH4 and CO2). The considerable amounts of biodegradable constitutes such as carbohydrates, lipids and proteins present in the microalgae biomass make it a suitable substrate for the anaerobic digestion or even c
... Show MoreTow simple, rapid and sensitive spectrophotometric methods for the determination of mesalazine in pharmaceutical preparations have been carried out. The proposed methods depend on oxidative coupling reaction of mesalazine with m-aminophenol in the existence of N-bromosuccinamide in alkaline medium (method A) and 2,6-dihydroxybenzoic acid in the existence of sodium metaperiodate in basic medium (method B) to produce colored products , show highest absorptions at 640 (nm) and 515 (nm), alternately. Beer’s law was consistent in concentrations extent of 1.25-30 and 0.5-12.5 (µg.mL-1) with molar absorptivity of 0.36×104 and 0.77×104 L.mol-1.cm<
... Show MoreMicroalgae have been increasingly used for wastewater treatment due to their capacity to assimilate nutrients. Samples of wastewater were taken from the Erbil wastewater channel near Dhahibha village in northern Iraq. The microalga Coelastrella sp. was used in three doses (0.2, 1, and 2g. l-1) in this experiment for 21 days, samples were periodically (every 3 days) analyzed for physicochemical parameters such as pH, EC, Phosphate, Nitrate, and BOD5, in addition to, Chlorophyll a concentration. Results showed that the highest dose 2g.l-1 was the most effective dose for removing nutrients, confirmed by significant differences (p≤0.05) between all doses. The highest removal percentage was
... Show More
Abstract: Narrow laser pulses have been essential sources in optical communication system. High data rate optical communication network system demands compressed laser source with unique optical property. In this work using pulsed duration (9) ns, peak power 1.2297mW, full width half maximum (FWHM) 286 pm, and wavelength center 1546.7 nm as compression laser source. Mach Zehnder interferometer (MZI) is built by considering two ways. First, polarization maintaining fiber (PMF) with 10 cm length is used to connect between laser source and fiber brag grating analysis (FBGA). Second, Nested Mach Zehnder interferometer (NMZI) was designed by using three PMFs with 10 cm length. These three Fibers are splicing to sing
... Show MoreAn Indirect simple sensitive and applicable spectrofluorometric method has been developed for the determination of Cefotaxime Sodium (CEF), ciprofloxacin Hydrochloride (CIP) and Famotidine (FAM) using reaction system bromate-bromide and acriflavine (AF) as fluorescent dye. The method is based on the oxidation of drugs with known excess bromate-bromide mixture in acidic medium and subsequent determination of unreacted oxidant by quenching fluorescence of AF. Fluorescence intensity of residual AF was measured at 528 nm after excitation at 402 nm. The fluorescence-concentration plots were rectilinear over the ranges 0.1-3.0, 0.05-2.6 and 0.1-3.8 µg ml-1 with lower detection limits of 0.013, 0.018 and 0.021 µg ml-1 an
... Show MoreIn the present study, a pressure drop technique was used to identify the phase inversion point of oil-in-water to water-in-oil flows through a horizontal pipe and to study the effect of additives (nanoparticles, cationic surfactant and blend nanoparticles-surfactant) on the critical dispersed volume fraction (phase inversion point). The measurements were carried for mixture velocity ranges from 0.8 m/sec to 2.3 m/sec. The results showed that at low mixture velocity 0.8 and 1 m/sec there is no effect of additives and velocity on phase inversion point, while at high mixture velocities the phase inversion point for nanoparticles and blend (nanoparticles/surfactant) systems was delayed (postponed) to a higher value of the dispers
... Show MoreAbstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line
... Show More