This paper experimentally investigated the dynamic buckling behavior of AISI 303 stainless steel aluminized and as received intermediate columns. Twenty seven specimens without aluminizing (type 1) and 75 specimens with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), were tested under dynamic compression loading (compression and torsion), dynamic bending loading (bending and torsion), and under dynamic combined loading (compression, bending, and torsion) by using a rotating buckling test machine. The experimental results werecompared with tangent modulus theory, reduced modulus theory, and Perry Robertson interaction formula. Reduced modulus was formulated to circular cross-section for the specimens of type (1).The experimental results obtained showed an advantageous influence of hot-dip aluminizing treatment on the dynamic buckling behavior of AISI 303 stainless steel intermediate columns. The improvements based on the average value of critical stress were19.4 % for intermediate columns type (2) compared with columns type (1) under dynamic compression loading, 8.7 % for intermediate columns type (2) compared with columns type (1) under dynamic bending loading, and 16.5 % for intermediate columns type (2) compared with columns type (1) under dynamic combined loading.
The gypseous soil may be one of the problems that face the engineers especially when it used as a foundation for hydraulic structures, roads, and other structures. Gypseous soil is strong soil and has good properties when it is dry, but the problem arises when building hydraulic installations or heavy buildings on this soil after wetting the water to the soil by raising the water table level from any source or from rainfall which leads to dissolve the gypsum content. Cement-stabilized soil has been successfully used as a facing or lining for earth channel, highway embankments and drainage ditches to reduce the risk of erosion and collapsibility of soil. This study is deliberate the treatment of gypseous soil by using a mixture
... Show MoreSteel-concrete-steel (SCS) structural element solutions are rising due to their advantages over conventional reinforced concrete in terms of cost and strength. The impact of SCS sections with various core materials on the structural performance of composites has not yet been fully explored experimentally, and in this work, both slag and polypropylene fibers were incorporated in producing eco-friendly steel-concrete-steel composite sections. This study examined the ductility, ultimate strength, failure modes, and energy absorption capacities of steel-concrete-steel filled with eco-friendly concrete, enhanced by polypropylene fiber (PPF) to understand its impact on modern structural projects. Eco-friendly concrete was produced by the partial
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show MoreAbstract\
In this research, estimated the reliability of water system network in Baghdad was done. to assess its performance during a specific period. a fault tree through static and dynamic gates was belt and these gates represent logical relationships between the main events in the network and analyzed using dynamic Bayesian networks . As it has been applied Dynamic Bayesian networks estimate reliability by translating dynamic fault tree to Dynamic Bayesian networks and reliability of the system appreciated. As was the potential for the expense of each phase of the network for each gate . Because there are two parts to the Dynamic Bayesian networks and two part of gate (AND), which includes the three basic units of the
... Show MoreThis study produces an image of theoretical and experimental case of high loading stumbling condition for hip prosthesis. Model had been studied namely Charnley. This model was modeled with finite element method by using ANSYS software, the effect of changing the design parameters (head diameter, neck length, neck ratio, stem length) on Charnley design, for stumbling case as impact load where the load reach to (8.7* body weight) for impact duration of 0.005sec.An experimental rig had been constructed to test the hip model, this rig consist of a wood box with a smooth sliding shaft where a load of 1 pound is dropped from three heights.
The strain produced by this impact is measured by using rosette strain gauge connected to Wheatstone
In the present paper, an eco-epidemiological model consisting of diseased prey consumed by a predator with fear cost, and hunting cooperation property is formulated and studied. It is assumed that the predator doesn’t distinguish between the healthy prey and sick prey and hence it consumed both. The solution’s properties such as existence, uniqueness, positivity, and bounded are discussed. The existence and stability conditions of all possible equilibrium points are studied. The persistence requirements of the proposed system are established. The bifurcation analysis near the non-hyperbolic equilibrium points is investigated. Numerically, some simulations are carried out to validate the main findings and obtain the critical values of th
... Show More