Preferred Language
Articles
/
alkej-330
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinematic equation. To feed the neural network, experimental data were taken from an elastic robot arm for training the network, these data presented by joint angles, deformation variables and end-effector positions. The results of network training showed a good fit between the output results of the neural network and the targets data. In addition, this method for finding the inverse of kinematic equation proved its effectiveness and validation when applying the results of neural network practically in the robot’s operating software for controlling the real light robot’s position.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
Crossref (3)
Crossref
View Publication Preview PDF
Publication Date
Wed Feb 01 2023
Journal Name
Baghdad Science Journal
Retrieving Encrypted Images Using Convolution Neural Network and Fully Homomorphic Encryption

A content-based image retrieval (CBIR) is a technique used to retrieve images from an image database. However, the CBIR process suffers from less accuracy to retrieve images from an extensive image database and ensure the privacy of images. This paper aims to address the issues of accuracy utilizing deep learning techniques as the CNN method. Also, it provides the necessary privacy for images using fully homomorphic encryption methods by Cheon, Kim, Kim, and Song (CKKS). To achieve these aims, a system has been proposed, namely RCNN_CKKS, that includes two parts. The first part (offline processing) extracts automated high-level features based on a flatting layer in a convolutional neural network (CNN) and then stores these features in a

... Show More
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jun 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Reduction of the error in the hardware neural network

Specialized hardware implementations of Artificial Neural Networks (ANNs) can offer faster execution than general-purpose microprocessors by taking advantage of reusable modules, parallel processes and specialized computational components. Modern high-density Field Programmable Gate Arrays (FPGAs) offer the required flexibility and fast design-to-implementation time with the possibility of exploiting highly parallel computations like those required by ANNs in hardware. The bounded width of the data in FPGA ANNs will add an additional error to the result of the output. This paper derives the equations of the additional error value that generate from bounded width of the data and proposed a method to reduce the effect of the error to give

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
On Comparison Study between Double Sumudu and Elzaki Linear Transforms Method for Solving Fractional Partial Differential Equations

        In this paper, double Sumudu and double Elzaki transforms methods are used to compute the numerical solutions for some types of fractional order partial differential equations with constant coefficients and explaining the efficiently of the method by illustrating some numerical examples that are computed by using  Mathcad 15.and graphic in Matlab R2015a.

Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Baghdad Science Journal
Diagnosing COVID-19 Infection in Chest X-Ray Images Using Neural Network

With its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques.  T

... Show More
Scopus (4)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sat Dec 31 2022
Journal Name
International Journal On “technical And Physical Problems Of Engineering”
Age Estimation Utilizing Deep Learning Convolutional Neural Network

Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes

... Show More
Scopus (8)
Scopus
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Offline Signature Biometric Verification with Length Normalization using Convolution Neural Network

Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
2018 Ieee/acs 15th International Conference On Computer Systems And Applications (aiccsa)
Scopus (9)
Crossref (7)
Scopus Crossref
View Publication
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Robot Arm Path Planning Using Modified Particle Swarm Optimization based on D* algorithm

Abstract

Much attention has been paid for the use of robot arm in various applications. Therefore, the optimal path finding has a significant role to upgrade and guide the arm movement. The essential function of path planning is to create a path that satisfies the aims of motion including, averting obstacles collision, reducing time interval, decreasing the path traveling cost and satisfying the kinematics constraints. In this paper, the free Cartesian space map of 2-DOF arm is constructed to attain the joints variable at each point without collision. The D*algorithm and Euclidean distance are applied to obtain the exact and estimated distances to the goal respectively. The modified Particle Swarm Optimization al

... Show More
Crossref (8)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 31 2011
Journal Name
Al-khwarizmi Engineering Journal
Path Planning Control for Mobile Robot

Autonomous motion planning is important area of robotics research. This type of planning relieves human operator from tedious job of motion planning. This reduces the possibility of human error and increase efficiency of whole process.

This research presents a new algorithm to plan path for autonomous mobile robot based on image processing techniques by using wireless camera that provides the desired image for the unknown environment . The proposed algorithm is applied on this image to obtain a optimal path for the robot. It is based on the observation and analysis of the obstacles that lying in the straight path between the start and the goal point by detecting these obstacles, analyzing and studying their shapes, positions and

... Show More
View Publication Preview PDF