Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano modifiers, were physical properties like density, water absorption are more in case of TiO2 modified epoxy composite. This may be because of smaller particle size of silica compare to others.
Laser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.
Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger). Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Final
... Show MoreThe Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two mai
... Show MoreThe Lamiaceae L. family grows and widely distributed in Iraq. The study aimed to enumerate the species that has been preserved in several botanical herbariums: National Herbarium of Iraq- Ministry of Agriculture (BAG), University of Baghdad Herbarium (BUH), Iraq Natural History Research Center& Museum- University of Baghdad Herbarium (BUNH), College of Agricultural Engineering- University of Baghdad Herbarium (BUG), College of Agricultural Engineering Sciences- Duhok Province University Herbarium (DPUH) and College of Science - Salahddin University Herbarium (SUH). This family has not yet been registered in the Flora of Iraq. After examining more than 1000 herbarium specimens, the study found 139 species belonging to 33 genera h
... Show MorePick and place system is one of the significant employments of modern robots utilized in industrial environments. The objective of this research is to make a comparison of time sequences by combining multiple axes of sequences. A pick-place system implemented with pneumatic linear double-acting cylinders to applicator in automated systems processes for manufacturing. The challenge of 3-axes movement control was achieved using the PLC (Programmable Logic Controller) controller such that the merging between two or three axes was achieved according to the selected sequence of the program. The outcomes show the contrasted sequences and the reference in a constant velocity. The main variable parameter is the number of steps for each sequ
... Show MoreSince the appearance of COVID-19 disease as an epidemic and pandemic disease, many studies are performed to uncover the genetic nature of the newly discovered coronavirus with unique clinical features. The last three human coronavirus outbreaks, SARS-CoV, MERS-CoV and SARS-CoV-2 are caused by Beta-Coronaviruses. Horizontal genetic materials transfer was proven from one coronavirus to the other coronavirus of non-human origin like infectious bronchitis virus (IBV) of avian. Horizontal genetic materials transfer was also from non-corona viruses like astroviruses and equine rhinovirus (ERV-2) or from coronavirus-unrelated viruses, like influenza virus type C. However, SARS-CoV-2 is identical to SARS-CoV and MERS-CoV. Interestingly, Wuhan ci
... Show MoreSimple and sensitive spectrophotometric method is described based on the coupling reaction of tetracycline hydrochloride (TC. HCl) with diazotized 4-aminopyridine in bulk and pharmaceutical forms. Colored azo dye formed during this reaction is measured at 433 nm as a function of time. Factors affecting the reaction yield were studied and the conditions were optimized. The kinetic study involves initial rate and fixed time (10 minutes) procedures for constructing the calibration graphs to determine the concentration of (TC. HCl). The graphs were linear for both methods in concentration range of 10.0 to 100.0 μg.mL-1. The recommended procedure was applied successfully in the determination of (TC. HCl) in its commercial formulations.
This paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi
... Show MoreA review of the literature on intellectual capital development was conducted using systemic criteria for the inclusion of relevant studies. The concepts behind the ideas explored in the present study were discussed in respect to the subject matter. Examining the past state of the art in the intellectual capital sector for achieving high levels of innovation performance provided a multidimensional picture of intellectual capital, innovation performance, and dynamic capabilities. The present review was designed to illustrate the correlation between intellectual capital and innovation performance, as well as the role of dynamic capabilities in moderating the relationship between these constructs. Accordingly, we presented an extensive
... Show More