Preferred Language
Articles
/
alkej-305
Experimental and Prediction Using Artificial Neural Network of Bed Porosity and Solid Holdup in Viscous 3-Phase Inverse Fluidization

In the present investigation, bed porosity and solid holdup in viscous three-phase inverse fluidized bed (TPIFB) are determined for aqueous solutions of carboxy methyl cellulose (CMC) system using polyethylene and polypropylene as  a particles with low-density and diameter (5 mm) in a (9.2 cm) inner diameter with height (200 cm) of vertical perspex column. The effectiveness of gas velocity Ug , liquid velocity UL, liquid viscosity μL, and particle density ρs on bed porosity BP and solid holdups εg were determined. The bed porosity increases with "increasing gas velocity", "liquid velocity", and "liquid viscosity". Solid holdup decreases with increasing gas, liquid velocities and liquid viscosity. Solid holdup with "low density particles" shows a higher numerical quantity "than that in the beds" with "high density". Levenberg-Marquardt back propagation of "artificial neural network (ANNs)" was utilized to predict the bed porosity and solid holdup. The expected values are in an excellent relationship with the experimental values, where the advanced model is high-fidelity and own a large capacity to predict bed porosity and solid holdup.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 01 2008
Journal Name
2008 Ieee International Joint Conference On Neural Networks (ieee World Congress On Computational Intelligence)
Scopus (12)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Solid State Technology
Image Fusion Using A Convolutional Neural Network

Image Fusion Using A Convolutional Neural Network

Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Arabic Keywords Extraction using Conventional Neural Network

    Keywords provide the reader with a summary of the contents of the document and play a significant role in information retrieval systems, especially in search engine optimization and bibliographic databases. Furthermore keywords help to classify the document into the related topic. Keywords extraction included manual extracting depends on the content of the document or article and the judgment of its author. Manual extracting of keywords is costly, consumes effort and time, and error probability. In this research an automatic Arabic keywords extraction model based on deep learning algorithms is proposed. The model consists of three main steps: preprocessing, feature extraction and classification to classify the document

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Improving the Network Lifetime in Wireless Sensor Network for Internet of Thing Applications

Mobile Wireless sensor networks have acquired a great interest recently due to their capability to provide good solutions and low-priced in multiple fields. Internet of Things (IoT) connects different technologies such as sensing, communication, networking, and cloud computing. It can be used in monitoring, health care and smart cities. The most suitable infrastructure for IoT application is wireless sensor networks. One of the main defiance of WSNs is the power limitation of the sensor node. Clustering model is an actual way to eliminate the inspired power during the transmission of the sensed data to a central point called a Base Station (BS). In this paper, efficient clustering protocols are offered to prolong network lifetime. A kern

... Show More
Crossref (5)
Crossref
View Publication Preview PDF
Publication Date
Thu May 28 2020
Journal Name
Iraqi Journal Of Science
An Artificial Neural Network for Predicting Rate of Penetration in AL- Khasib Formation – Ahdeb Oil Field

The main objective of this study is to develop a rate of penetration (ROP) model for Khasib formation in Ahdab oil field and determine the drilling parameters controlling the prediction of ROP values by using artificial neural network (ANN).

     An Interactive Petrophysical software was used to convert the raw dataset of transit time (LAS Readings) from parts of meter-to-meter reading with depth. The IBM SPSS statistics software version 22 was used to create an interconnection between the drilling variables and the rate of penetration, detection of outliers of input parameters, and regression modeling. While a JMP Version 11 software from SAS Institute Inc. was used for artificial neural modeling.

&nb

... Show More
Scopus (3)
Crossref (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Feature Extraction of Human Facail Expressions Using Haar Wavelet and Neural network

One of the challenging and active research topics in the recent years is Facial Expression. This paper presents the method to extract the features from the facial expressions from still images. Feature extraction is very important for classification and recognition process. This paper involve three stages which contain capture the images, pre-processing and feature extractions. This method is very efficient in feature extraction by applying haar wavelet and Karhunen-Loève Transform (KL-T). The database used in this research is from Cohen-Kanade which used six expressions of anger, sadness fear, happiness, disgust and surprise. Features that have been extracted from the image of facial expressions were used as inputs to the neural networ

... Show More
View Publication Preview PDF
Publication Date
Thu Mar 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction in One of Iraqi Carbonate Reservoir Using Hydraulic Flow Units and Neural Networks

Permeability determination in Carbonate reservoir is a complex problem, due to their capability to be tight and heterogeneous, also core samples are usually only available for few wells therefore predicting permeability with low cost and reliable accuracy is an important issue, for this reason permeability predictive models become very desirable.

   This paper will try to develop the permeability predictive model for one of  Iraqi carbonate reservoir from core and well log data using the principle of Hydraulic Flow Units (HFUs). HFU is a function of Flow Zone Indicator (FZI) which is a good parameter to determine (HFUs).

   Histogram analysis, probability analysis and Log-Log plot of Reservoir Qua

... Show More
View Publication Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Heliyon
Scopus (24)
Crossref (21)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Sep 07 2020
Journal Name
Environmental Science And Pollution Research
Scopus (26)
Crossref (23)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 01 2021
Journal Name
Iop Conference Series: Earth And Environmental Science
Treatability influence of municipal sewage effluent on surface water quality assessment based on Nemerow pollution index using an artificial neural network
Abstract<p>Assessing water quality provides a scientific foundation for the development and management of water resources. The objective of the research is to evaluate the impact treated effluent from North Rustumiyia wastewater treatment plant (WWTP) on the quality of Diyala river. The model of the artificial neural network (ANN) and factor analysis (FA) based on Nemerow pollution index (NPI). To define important water quality parameters for North Al-Rustumiyia for the line(F2), the Nemerow Pollution Index was introduced. The most important parameters of assessment of water variation quality of wastewater were the parameter used in the model: biochemical oxygen demand (BOD), chemical oxygen dem</p> ... Show More
Scopus (5)
Crossref (3)
Scopus Crossref
View Publication