The application of ultrafiltration (UF) and nanofiltration (NF) processes in the handling of raw produced water have been investigated in the present study. Experiments of both ultrafiltration and nanofiltration processes are performed in a laboratory unit, which is operated in a cross-flow pattern. Various types of hollow fiber membranes were utilized in this study such as poly vinyl chloride (PVC) UF membrane, two different polyether sulfone (PES) NF membranes, and poly phenyl sulfone PPSU NF membrane. It was found that the turbidity of the treated water is higher than 95 % by using UF and NF membranes. The chemical oxygen demand COD (160 mg/l) and Oil content (26.8 mg/l) were found after treatment according to the allowable limits set by means of world health organization WHO water quality standards. The final composition of SO4-2 (110 mg/l) and NO3 (48.4 mg/l) components within the produced water after treatment were agreed with the permissible limits of WHO, whereas Cl-1 (8900 mg/l) component is not in the allowable limits. Finally by the use of PVC, PES and PPSU hollow fiber membranes; this method is seen to be not sufficient to remove the salinity of the produced water.
Specific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface mor
... Show MoreBackground: Selenium-73 with half- life of 7.15 hour emits β+ in nature and has six stable isotopes which are ( 74Se,76Se,77Se,78Se,80Se and 82Se ). Selenium-73 has many applications in technology and radioselenium compounds of metallic have found various applications in medicine. Objective: To make a comparison between different reactions that produced cross sections of Se-73 radioisotopes. Subjects and methods: The feasibility of the production of Selenium -73 via various nuclear reactions was investigated. Excitation functions of 73Se production by the reactions of 75As (p,3n), 169Tm( d,x), 74Se, natSe, natBr (p,x) , 75As (d,4n), natGe (3He,x), 70Ge (α, n), and 72Ge (α, 3n) and neutron capture were calculated using the avail
... Show MoreBackground: Selenium-73 with half- life of 7.15 hour emits β+ in nature and has six stable isotopes which are ( 74Se,76Se,77Se,78Se,80Se and 82Se ). Selenium-73 has many applications in technology and radioselenium compounds of metallic have found various applications in medicine.
Objective: To make a comparison between different reactions that produced cross sections of Se-73 radioisotopes.
Subjects and methods: The feasibility of the production of Selenium -73 via various nuclear reactions was investigated. Excitation functions of 73Se production by the re
... Show MoreThe present study was conducted to estimate the antimicrobial activity and the potential biological control of the killer toxin produced by
Airlift reactors are widely used in the chemical and biochemical applications as effective contactors for mass and heat transfer. The main advantages of airlift contactor compared with simple bubble column are ease of construction, low shear rate, high capacity, good mixing and liquid circulation without mechanical agitators and circulating pumps.
In this work, growth characteristics of Chlorella vulgaris microalgae were studied in an internal loop airlift photobioreactor for biomass production. The bioreactor operated under batch and semi-continuous culture mode using commercially available 20:20:20+TE NPK fertilizer as nutrients. The experiments were conducted to evaluate the growth rate and biomass productivity of
... Show MoreFurfural is one of the one of pollutants in refinery industrial wastewaters. In this study advanced oxidation process using UV/H2O2 was investigated for furfural degradation in synthetic wastewater. The results from the experimental work showed that the degradation of furfural decreases as its concentration increases, reaching 100% at 50mg/l furfural concentration and increasing the concentration of H2O2 from 250 to 500 mg/l increased furfural removal from 40 to 60%.The degradation of furfural reached 100% after 90 min exposure time using two UV lamps, where it reached 60% using one lamp after 240 min exposure time. The rate of furfural degradation k increased at the pH and initial concentratio
... Show MoreBackground Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li
... Show Moren this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.