Preferred Language
Articles
/
alkej-303
Modeling the removal of Cadmium Ions from Aqueous Solutions onto Olive Pips Using Neural Network Technique
...Show More Authors

The uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.

Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlation equal to 0.99798. The sensitivity analysis for outputs of ANN signified that the relative importance of initial pH equal to 38 % and it is the influential parameter in the treatment process, followed by initial concentration, agitation speed, biosorbent dosage, time and temperature

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 31 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Heavy Metals from Industrial Wastewater by Using RO Membrane
...Show More Authors

Industrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 31 2015
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Electrochemical removal of copper from synthetic wastewater using rotating cylinder electrode
...Show More Authors

The performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to  mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Numerical Modeling of Water Movement from Buried Vertical Ceramic Pipes through Coarse Soils
...Show More Authors

Problem of water scarcity is becoming common in many parts of the world.  Thus to overcome this problem proper management of water and an efficient irrigation systems are needed.  Irrigation with buried vertical ceramic pipe is known as a very effective in management of irrigation water.  The two- dimensional transient flow of water from a buried vertical ceramic pipe through homogenous porous media is simulated numerically using the software HYDRUS/2D to predict empirical formulas that describe the predicted results accurately.   Different values of pipe lengths and hydraulic conductivity were selected.  In addition, different values of initial volumetric soil water content were assumed in this simulation a

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Feb 06 2020
Journal Name
Scientific Reports
Waste foundry sand/MgFe-layered double hydroxides composite material for efficient removal of Congo red dye from aqueous solution
...Show More Authors
Abstract<p>We aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure</p> ... Show More
Scopus (172)
Crossref (110)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Aip Conference Proceedings
Artificial neural network model for predicting the desulfurization efficiency of Al-Ahdab crude oil
...Show More Authors

View Publication Preview PDF
Scopus (9)
Crossref (9)
Scopus Crossref
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Sep 01 2016
Journal Name
Journal Of Engineering
Calculating the Transport Density Index from Some of the Productivity Indicators for Railway Lines by Using Neural Networks
...Show More Authors

The efficiency evaluation of the railway lines performance is done through a set of indicators and criteria, the most important are transport density, the productivity of enrollee, passenger vehicle production, the productivity of freight wagon, and the productivity of locomotives. This study includes an attempt to calculate the most important of these indicators which transport density index from productivity during the four indicators, using artificial neural network technology. Two neural networks software are used in this study, (Simulnet) and (Neuframe), the results of second program has been adopted. Training results and test to the neural network data used in the study, which are obtained from the international in

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Finite Element Neural Network And Its Applications To Forward And Inverse Problems
...Show More Authors

In this paper, first we   refom1Ulated   the finite   element  model

(FEM)   into   a   neural   network   structure   using   a   simple   two   - dimensional problem. The structure of this neural network is described

, followed  by its   application   to   solving  the forward    and  inverse problems. This model is then extended to the general case and the advantages and  di sadvantages  of  this  approach  are  descri bed  along with an analysis  of  the sensi tivity   of

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Block Ciphers Analysis Based on a Fully Connected Neural Network
...Show More Authors

With the development of high-speed network technologies, there has been a recent rise in the transfer of significant amounts of sensitive data across the Internet and other open channels. The data will be encrypted using the same key for both Triple Data Encryption Standard (TDES) and Advanced Encryption Standard (AES), with block cipher modes called cipher Block Chaining (CBC) and Electronic CodeBook (ECB). Block ciphers are often used for secure data storage in fixed hard drives, portable devices, and safe network data transport. Therefore, to assess the security of the encryption method, it is necessary to become familiar with and evaluate the algorithms of cryptographic systems. Block cipher users need to be sure that the ciphers the

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Jan 01 2013
Journal Name
International Journal Of Application Or Innovation In Engineering & Management (ijaiem)
Probabilistic Neural Network for User Authentication Based on Keystroke Dynamics
...Show More Authors

Computer systems and networks are increasingly used for many types of applications; as a result the security threats to computers and networks have also increased significantly. Traditionally, password user authentication is widely used to authenticate legitimate user, but this method has many loopholes such as password sharing, brute force attack, dictionary attack and more. The aim of this paper is to improve the password authentication method using Probabilistic Neural Networks (PNNs) with three types of distance include Euclidean Distance, Manhattan Distance and Euclidean Squared Distance and four features of keystroke dynamics including Dwell Time (DT), Flight Time (FT), mixture of (DT) and (FT), and finally Up-Up Time (UUT). The resul

... Show More