Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.
Abstract:
If we neglect the value of historical fashions as a source of inspiration for
contemporary fashion designers we will neglect a treasure of original designs.
In neglecting such a treasure how could we then know what is original. Today
the most famous fashion designers are often inspired, in the outwardly from
and internal lines of their fashions, by fashion designed during the ages of the
past.
Designers can find such fashions in books of history and museums. But
the historical ages are not equal in the fertility of the originality and novelty of
their fashions. Thus the contemporary designer may not find the old designs
inspiring so he invents them.
The researcher was keen in this paper to inclu
The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3 rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM) in M technique wh
... Show MoreCompression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S), composite wavelet technique (W) and composite multi-wavelet technique (M). For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet
... Show MoreIn this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show MoreFour rapid, accurate and very simple derivative spectrophotometric techniques were developed for the quantitative determination of binary mixtures of estradiol (E2) and progesterone (PRG) formulated as a capsule. Method I is the first derivative zero-crossing technique, derivative amplitudes were detected at the zero-crossing wavelength of 239.27 and 292.51 nm for the quantification of estradiol and 249.19 nm for Progesterone. Method II is ratio subtraction, progesterone was determined at λmax 240 nm after subtraction of interference exerted by estradiol. Method III is modified amplitude subtraction, which was established using derivative spectroscopy and mathematical manipulations. Method IIII is the absorbance ratio technique, absorba
... Show MoreThe useful of remote sensing techniques in Environmental Engineering and another science is to save time, Coast and efforts, also to collect more accurate information under monitoring mechanism. In this research a number of statistical models were used for determining the best relationships between each water quality parameter and the mean reflectance values generated for different channels of radiometer operate simulated to the thematic Mappar satellite image. Among these models are the regression models which enable us to as certain and utilize a relation between a variable of interest. Called a dependent variable; and one or more independent variables
Abstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show More