This paper presents L1-adaptive controller for controlling uncertain parameters and time-varying unknown parameters to control the position of a DC servomotor. For the purpose of comparison, the effectiveness of L1-adaptive controller for position control of studied servomotor has been examined and compared with another adaptive controller; Model Reference Adaptive Controller (MRAC). Robustness of both L1-adaptive controller and model reference adaptive controller to different input reference signals and different structures of uncertainty were studied. Three different types of input signals are taken into account; ramp, step and sinusoidal. The L1-adaptive controller ensured uniformly bounded transient and asymptotic tracking for both system's input and output signals, simultaneously with asymptotic tracking. Simulations of a DC servomotor with time-varying friction and disturbance are presented to verify the theoretical findings.
This research involves design and simulation of GaussianFSK transmitter in UHF band using direct modulation of ΣΔ fractional-N synthesizer with the following specifications:
Frequency range (869.9– 900.4) MHz, data rate 150kbps, channel spacing (500 kHz), Switching time 1 µs, & phase noise @10 kHz = -85dBc.
New circuit techniques have been sought to allow increased integration of radio transmitters and receivers, along with new radio architectures that take advantage of such techniques. Characteristics such as low power operation, small size, and low cost have become the dominant design criteria by which these systems are judged.
A direct modulation by ΣΔ fractional-N synthesizer is proposed
... Show MoreIn this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreAn adaptive nonlinear neural controller to reduce the nonlinear flutter in 2-D wing is proposed in the paper. The nonlinearities in the system come from the quasi steady aerodynamic model and torsional spring in pitch direction. Time domain simulations are used to examine the dynamic aero elastic instabilities of the system (e.g. the onset of flutter and limit cycle oscillation, LCO). The structure of the controller consists of two models :the modified Elman neural network (MENN) and the feed forward multi-layer Perceptron (MLP). The MENN model is trained with off-line and on-line stages to guarantee that the outputs of the model accurately represent the plunge and pitch motion of the wing and this neural model acts as the identifier. Th
... Show MoreAbstract
This paper presents mechanical and electrical design, and implementation process of industrial robot, 3-DoF type SCARA (selective compliment assembly robot arm),with two rotations and one translation used for welding applications.The design process also included the controller design which was based on PLC(programmable logic controller) as well as selection of mechanical and electrical components.The challenge was to use the available components in Iraq with reasonable costs. The robot mentioned is fully automated using programmable logic controller PLC(Zelio type SR3-B261BD),with 16inputs and 10 outputs. The PLC was implemented in FBD logic to obtain three different automatic motions with hi
... Show MoreA perturbed linear system with property of strong observability ensures that there is a sliding mode observer to estimate the unknown form inputs together with states estimation. In the case of the electro-hydraulic system with piston position measured output, the above property is not met. In this paper, the output and its derivatives estimation were used to build a dynamic structure that satisfy the condition of strongly observable. A high order sliding mode observer (HOSMO) was used to estimate both the resulting unknown perturbation term and the output derivatives. Thereafter with one signal from the whole system (piton position), the piston position make tracking to desire one with a simple linear output feedback controller after ca
... Show MoreIn this paper, a microcontroller-based electronic circuit have been designed and implemented for dental curing system using 8-bit MCS-51 microcontroller. Also a new control card is designed while considering advantages of microcontroller systems the time of curing was controlled automatically by preset values which were input from a push-button switch. An ignition based on PWM technique was used to reduce the high starting current needed for the halogen lamp. This paper and through the test result will show a good performance of the proposed system.
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreSliding Mode Controller (SMC) is a simple method and powerful technique to design a robust controller for nonlinear systems. It is an effective tool with acceptable performance. The major drawback is a classical Sliding Mode controller suffers from the chattering phenomenon which causes undesirable zigzag motion along the sliding surface. To overcome the snag of this classical approach, many methods were proposed and implemented. In this work, a Fuzzy controller was added to classical Sliding Mode controller in order to reduce the impact chattering problem. The new structure is called Sliding Mode Fuzzy controller (SMFC) which will also improve the properties and performance of the classical Sliding Mode control
... Show MoreThe aim of human lower limb rehabilitation robot is to regain the ability of motion and to strengthen the weak muscles. This paper proposes the design of a force-position control for a four Degree Of Freedom (4-DOF) lower limb wearable rehabilitation robot. This robot consists of a hip, knee and ankle joints to enable the patient for motion and turn in both directions. The joints are actuated by Pneumatic Muscles Actuators (PMAs). The PMAs have very great potential in medical applications because the similarity to biological muscles. Force-Position control incorporating a Takagi-Sugeno-Kang- three- Proportional-Derivative like Fuzzy Logic (TSK-3-PD) Controllers for position control and three-Proportional (3-P) controllers for force contr
... Show More