The present study involves experimental analysis of the modified Closed Wet Cooling Tower (CWCT) based on first and second law of thermodynamics, to gain a deeper knowledge in this important field of engineering in Iraq. For this purpose, a prototype of CWCT optimized by added packing under a heat exchanger was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the towers thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of air measured at intermediate points of the heat exchanger and packing. Exergy of water and air were calculated by applying the exergy destruction method on the cooling tower. Experimental results showed a significant performance improvement when using packing on the CWCT. It can be observed that the thermal efficiency for the CWCT with packing under a heat exchanger and CWCT with packing above the heat exchanger are approximately 40% and 25% higher than that of the CWCT without packing respectively. As another part of the experiment results, it is indicated that the exergy destruction is directly proportional to air flow rate, cooling water flow rate, inlet cooling water flow rate and inlet Air Wet Bulb Temperature (AWBT) whereas, it is inversely proportional with spray water flow rate. In comparison with the cooling capacity of the tower, it was found that the exergy destruction approximately less than 20%. Exergy efficiency behavior is inversely proportional with the behavior of the exergy destruction. Empirical correlations are obtained to predict water film heat transfer coefficient and air-water mass transfer coefficient considering the influences of operational parameters.
Delays occur commonly in construction projects. Assessing the impact of delay is sometimes a contentious
issue. Several delay analysis methods are available but no one method can be universally used over another in
all situations. The selection of the proper analysis method depends upon a variety of factors including
information available, time of analysis, capabilities of the methodology, and time, funds and effort allocated to the analysis. This paper presents computerized schedule analysis programmed that use daily windows analysis method as it recognized one of the most credible methods, and it is one of the few techniques much more likely to be accepted by courts than any other method. A simple case study has been implement
This work presents mainly the buckling load of sandwich plates with or without crack for different cases. The buckling loads are analyzed experimentally and numerically by using ANSYS 15. The experimental investigation was to fabricate the cracked sandwich plate from stainless steel and PVC to find mechanical properties of stainless steel and PVC such as young modulus. The buckling load for different aspect ratio, crack length, cracked location and plate without crack found. The experimental results were compared with that found from ANSYS program. Present of crack is decreased the buckling load and that depends on crack size, crack location and aspect ratio.
Cognitive stylistics is one discipline of applied linguistics that relies on the reader’s interpretation and inference of the meaning of the text depending on his background knowledge. It studies how the reader understands the text and mapping it with his real experiences (Jeffries and McIntyre,2010). The present study is a cognitive stylistic analysis of digital stories. Digital stories are short narratives made by a combination of different sorts of digital media such as pictures, audios and videos. These digital media are employed to tell stories about oneself, famous people, and important events. The analyzed stories are selected from “Daily Yahoo Stories” and are analyzed according to Lakoff (1993) approach, The analysis investig
... Show MoreThe purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them.
Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system.
This paper presents numerical and experimental stress analyses to evaluate the contact and bending stresses on the teeth of spiral bevel gear drive. Finite Element Method has been adopted as a numerical technique which accomplished basically by using ANSYS software package. The experimental stress analysis has been achieved by using a gear tooth model made of Castolite material which has photoelastic properties. The main goal of this research is detecting the maximum tooth stresses to avoid the severe areas that caused tooth failure and to increase the working life for this type of gear drives.
Process capability provides a quantitative measure for gasoline production conformance to specifications.It was measured throughout four consecutive months of the last quarter of 2011. Results revealed high percentages (up to 44%) of non conforming gasoline blends to Iraqi marketing specifications for petroleum products (2000) by inspecting 122 different samples of Iraqi regular gasoline (RON 85).
Quality cost analysis as an important financial control tool was carried out to evaluate Cost of Quality (COQ) which was large due to non conforming gasoline reached up to (722.8 M.ID) in October. In this research COQ was investigated in order to identify the opportunities of gasoline quality improvements through production process. Also cus
An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.