The possibility of using activated carbon developed from date palm seeds wastes as a permeable reactive barrier (PRB) to remove copper from polluted shallow groundwater was investigated. The activated carbon has been developed from date palm seeds by dehydrating methods using concentrated sulfuric acid. Batch tests were performed to characterize the equilibrium sorption properties of new activated carbon in copper-containing aqueous solutions, while the sandy soil (aquifer) was assumed to be inert. Under the studied conditions, the Langmuir isotherm model gives a better fit for the sorption data of copper by activated carbon than other models. At a pilot scale, One-dimensional column experiments were performed, and an integrated model based on the solution of an advection-reaction-dispersion mass balance equation, using COMSOL Multiphysics 3.5a software which is based on finite element method, was developed to study the space and time concentration of copper within groundwater. Experimental and numerical results proved that the PRB represents a potential role in the restriction of the copper plume migration. Also, these results showed that the greater thickness of PRB results in a better treatment of copper and that the barrier starts to saturate with contaminant as a function of the travel time. However, a good agreement between the predicted (theoretical) and experimental results with RMSE not exceeded the 0.08 proved these methods are effective and efficient tools in description of copper transport phenomena adopted here.
The removal of commercial orange G dye from its aqueous solution by adsorption on tobacco leaves (TL) was studied in respect to different factor that affected the adsorption process. These factors including the tobacco leaves does, period of orange G adsorption, pH, and initial orange G dye concentration .Different types of isotherm models were used to describe the orange G dye adsorption onto the tobacco leaves. The experimental results were compared using Langmuir, and frundlich adsorption isotherm, the constants for these two isotherm models was determined. The results fitted frundlich model with value of correlation coefficient equal to (0.981). The capacity of adsorption for the orange G dye was carried out using various kinetic models
... Show MoreThe study area is part of the city of Samawa in Al Muthanna Governorate in southern Iraq. The study area is located to the west of Samawa city bounded by the north latitudes 31⁰11'-31o42' and east longitudes 44o58'- 45⁰16'and its groundwater resources are developed for supply and irrigation purposes. In order to evaluate the quality of groundwater in the study area, twenty three groundwater samples were collected and analyzed for physical and chemical parameters. Hydrochemical analysis showed that the groundwater of the study area is excessively mineralized and very hard. The increase in flow length of groundwater in the study area caused a change in water
... Show MoreThe aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of c
... Show MoreHighly-fluorescent Carbon Quantum Dots (CQDs) are synthesized in simple step by hydrothermal carbonization method of natural precursor such as orange juice as a carbon source. Hydrothermal method for synthesized CQDs requires simple and inexpensive equipment and raw materials, thus this method are now common synthesis method. The prepared CQDs have ultrafine size up to few nanometers and several features such as high solubility in water, low toxicity, high biocompatibility, photo-bleaching resistant, Chemical inertness and ease of functionalization which qualifies it for use in many applications such as bio-imaging, photo-labeling and photo-catalysis.
This research demonstrates the
... Show MoreAbstract
The research Compared two methods for estimating fourparametersof the compound exponential Weibull - Poisson distribution which are the maximum likelihood method and the Downhill Simplex algorithm. Depending on two data cases, the first one assumed the original data (Non-polluting), while the second one assumeddata contamination. Simulation experimentswere conducted for different sample sizes and initial values of parameters and under different levels of contamination. Downhill Simplex algorithm was found to be the best method for in the estimation of the parameters, the probability function and the reliability function of the compound distribution in cases of natural and contaminateddata.
... Show More
The eggshell cuticle is the proteinaceous outermost layer of the eggshell which regulates water exchange and protects against entry of micro-organisms. Outer eggshell and cuticle protein was extracted from domestic chicken. The aim of the research is to find out the effect of the treated and untreated nano particles of egg shells with micro wave cold plasma on the effectiveness of E. coli (negative bacteria) that infect the skin and measure the diameter of bacterial inhibition zone, the eggshell has been prepared by a chemical method (sol gel) and measure the level of acidity and the PH is neutral. The result of Atomic Force Microscope (AFM) shows that the particles diameters become smaller with nano-particles solution than for egg
... Show MoreABSTRACT: Pathogenic bacteria responsible for the causation of many common diseases have been identified on currency notes. The present investigation was carried out on one hundred currency notes of all the denominations (50, 100, 250, 500 and 1000RY), obtained from different occupational mainly bus drivers, hawker street, vegetable vendor, restaurants and butchers and fish seller groups in Taiz city,Yemen. Identification and characterization revealed active participation of the following species of organisms in the ascending order of percentage as E. coli(50.28 %),Staphylococci aureus(14.04 %), Klebsiellaspp(4.39 %),proteus(4.39 %), salmonella(1.25 %), shigella(0.72 %), Coagulase negative staphylococcus(0.60 %), pseudomonas(0.50 %),
... Show MoreObjective: The evaluation of serum osteocalcin (OSN) for Iraqi infertile patients to see the effect of osteocalcin insufficiency, which may lead to a decreased level of testosterone production in males that may cause infertility. Methods: Forty two newly diagnosed infertile males age range (24–47) years and thirty two apparently healthy males as controls age range (25–58) years. Serum levels of testosterone (TEST), stimulating follicle hormone (FSH) and luteinizing hormone (LH), prolactin (PROL), osteocalcin OSN, and fasting blood sugar (FBS) were performed in both patients and controls. Estimation of serum OSN by Immulite1000 auto-analyzer, TEST, FSH, LH, PROL, and FBS by Immulite2000 auto-analyzer. Results: Infertile patients
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreA new flow injection spectrophotometric method is described for the determination of copper ion Cu(II) in water samples (tap water and river water).The proposed method based on the formation of red complex [Cu(L)2(NO3)2] which has a maximum absorption at λmax=490 nm. Linear range for Cu (II) was from 5-70μg/mL with detection limit 2.55μg/mL. The effect of physical and chemical parameters were evaluated .The proposed method was applied successfully for determination of copper (II) in the tap and river water. [Cu(L)2(NO3)2] complex was prepared in a (2:1) mole ratio as ( reagent: copper (II)).The analytical reagent formed by reaction of thymol with 4-aminoantipyrine at room temperature. The metal complex was characterized by IR, UV-Visi
... Show More