In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, second and third mesh sizes and the agreement increase near the wall of the duct. The percentage error for the large eddy simulation model with experimental data of the (56×56) mesh size is less than 18 % and for the (76×76) mesh size is also less than 17% and for the (96×96) mesh size is less than 16 %. The large eddy simulation model show high stability and do not need extra differential equation like the k-ε model and a great saving in time and computer memory was achieved.
A new method is characterized by simplicity, accuracy and speed for determination of Oxonuim ion in ionisable inorganic acid such as hydrochloric (0.1 - 10) ,Sulphuric ( 0.1 - 6 ),nitric ( 0.1 - 10 ), perchloric ( 0.1 - 7 ), acetic (0.1 - 100 ) and phosphoric ( 0.1 - 30 ) ( mMol.L-1 )acids. By continuous flow injection analysis. The proposed method was based on generation of bromine from the Bro-3-Br-- H3O+. Bromine reacts with fluorescein to quenches the fluorescence . A sample volume no.1 (31μl) and no.2 (35μl) were used with flow rate of 0.95 mL.min-1 using H2O line no.1as carrier stream and 1.3 mL.min-1 using fluorescein sodium salt line no.2. Linear regression of the concentration ( mMol.L-1 ) Vs quenched fluorescence gives a correla
... Show MoreA new, simple and sensitive method was used forevaluation of propranolol withphosphotungstic acidto prove the efficiency, reliability and repeatability of the long distance chasing photometer (NAG-ADF-300-2) using continuous flow injection analysis. The method is based on reaction between propranolol and phosphotungstic acid in an aqueous medium to obtain a yellow precipitate. Optimum parameters was studied to increase the sensitivity for developed method. A linear range for calibration graph was 0.007-13 mmol/L for cell A and 5-15 mmol/L for cell B, and LOD 207.4792 ng/160 µL and 1.2449 µg/160 µL respectively to cell A and cell B with correlation coefficient (r) 0.9988 for cell A, 0.9996 for cell B, RSD% was lower than 1%, (n=8) for the
... Show MoreIn this article, the lattice Boltzmann method with two relaxation time (TRT) for the D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d
... Show MoreThis piece of research work aims to study one of the most difficult reaction and determination due to continuous and rapid variation of reaction products and the reactants. As molybdenum (VI) aid in the decomposition of hydrogen peroxide in alkaline medium of ammomia, thus means a continuous liberation of oxygen which cuases and in a continuous manner a distraction in the measurement process. On this basis pyrogallol was used to absorbe all liberated oxygen and the result is an a clean undisturbed signals. Molybdenum (VI) was determined in the range of 4-100 ?g.ml-1 with percentage linearity of 99.8% or (4-300 ?g.ml-1 with 94.4%) while L.O.D. was 3.5 ?g.ml-1. Interferring ions (cations and anions) were studied and their main effect was red
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show More