Preferred Language
Articles
/
alkej-294
Large Eddy Simulation in Duct Flow

In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, second and third mesh sizes and the agreement increase near the wall of the duct. The percentage error for the large eddy simulation model with experimental data of the (56×56) mesh size is less than 18 % and for the (76×76) mesh size is also less than 17% and for the (96×96) mesh size is less than 16 %. The large eddy simulation model show high stability and do not need extra differential equation like the k-ε model and a great saving in time and computer memory was achieved.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Mar 30 2020
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Simulation of Two Phase Flow Mixing Co – Current in T Junction Using Comsol

The analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times.  The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Sep 01 2008
Journal Name
Journal Of Engineering
Publication Date
Tue Dec 01 2020
Journal Name
Baghdad Science Journal
Real-Time Cloth Simulation on Virtual Human Character Using Enhanced Position Based Dynamic Framework Technique

     Cloth simulation and animation has been the topic of research since the mid-80's in the field of computer graphics. Enforcing incompressible is very important in real time simulation. Although, there are great achievements in this regard, it still suffers from unnecessary time consumption in certain steps that is common in real time applications.   This research develops a real-time cloth simulator for a virtual human character (VHC) with wearable clothing. This research achieves success in cloth simulation on the VHC through enhancing the position-based dynamics (PBD) framework by computing a series of positional constraints which implement constant densities. Also, the self-collision and collision wit

... Show More
Scopus (22)
Crossref (20)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Thu Jun 30 2016
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
CFD Simulation of Air Flow Patterns in a Spray Dryer Fitted With a Rotary Disk

The air flow pattern in a co-current pilot plant spray dryer fitted with a rotary disk atomizer was determined experimentally and modelled numerically using Computational Fluid Dynamics (CFD) (ANSYS Fluent ) software. The CFD simulation used a three dimensions system, Reynolds-Average Navier-Stokes equations (RANS), closed via the RNG k −ε turbulence model. Measurements were carried out at a rotation of the atomizer (3000 rpm) and when there is no rotation using a drying air at 25 oC and  air velocity at the inlet of  5 m/s without swirl. The air flow pattern was predicted experimentally using cotton tufts and digital anemometer. The CFD simulation predicted a downward central flowing air core surrounded by a slow

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 08 2002
Journal Name
Iraqi Journal Of Laser
Study of Laser Propagation Parameters in the Underdense Plasma Region Using a Two Dimensional Simulation Code

The propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for  = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.

View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Large-Coessential and Large-Coclosed Submodules

The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M  be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that  .

Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Large-Coessential and Large-Coclosed Submodules

The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M  be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that  .

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Large-Lifting and Large-Supplemented Modules

      In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules.  We also give some results and properties of this new kind of modules.

Scopus (1)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Large-Lifting and Large-Supplemented Modules

      In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules.  We also give some results and properties of this new kind of modules.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Oct 31 2013
Journal Name
Al-khwarizmi Engineering Journal
Simulation of a Wet Sulfuric Acid Process (WSA) for Utilization of Acid Gas Separated from Omani Natural Gas

In this study, a proposed process for the utilization of hydrogen sulphide separated with other gases from omani natural gas for the production of sulphuric acid by wet sulphuric acid process (WSA) was studied. The processwas simulated at an acid gas feed flow of   5000 m3/hr using Aspen ONE- V7.1-HYSYS software. A sensitivity analysis was conducted to determine the optimum conditions for the operation of plant. This included primarily the threepacked bed reactors connected in series for the production of sulphur trioxidewhich represented the bottleneck of the process. The optimum feed temperature  and catalyst bed volume for each reactor were estimated and then used in the simulation of the whole process for tw

... Show More
View Publication Preview PDF