In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, second and third mesh sizes and the agreement increase near the wall of the duct. The percentage error for the large eddy simulation model with experimental data of the (56×56) mesh size is less than 18 % and for the (76×76) mesh size is also less than 17% and for the (96×96) mesh size is less than 16 %. The large eddy simulation model show high stability and do not need extra differential equation like the k-ε model and a great saving in time and computer memory was achieved.
Throughout history, artists have played many important roles in society.
Generally speaking, the role of the artist is defined by the society he is part of.
Indeed, there are as many ideas as to the role of the artist and, ultimately the purpose
of art in society, as there are types of art. This is, as a matter of fact, neither a new
question- the dialogue has been present within art for centuries- nor probably one
that will ever fully be answered.
Tom Stoppard came to prominence in the mid-sixties, when art and politics
were closely linked, and theatre sought to change the world. Stoppard would have
none of that: his work has no overt message, no political program. In fact,
... Show MoreA mathematical model constructed to study the combined effects of the concentration and the thermodiffusion on the nanoparticles of a Jeffrey fluid with a magnetic field effect the process of containing waves in a three-dimensional rectangular porous medium canal. Using the HPM to solve the nonlinear and coupled partial differential equations. Numerical results were obtained for temperature distribution, nanoparticles concentration, velocity, pressure rise, pressure gradient, friction force and stream function. Through the graphs, it was found that the velocity of fluid rises with the increase of a mean rate of volume flow and a magnetic parameter, while the velocity goes down with the increasing a Darcy number and lateral walls. Also, t
... Show MoreThe Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process
The penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreA flight simulation programme has been developed on a personal computer using Microsoft
FORTRAN to simulate flight trajectories of a light aircraft by using Six-Degree-of-Freedom
equation of motion. The simulation has been made realistic through pre-programmed the input to
the control surfaces, atmospheric gust during the flight mode. The programme plays an important
role in the evaluation and validation of the aircraft design process. A light aircraft (Cessna 182T)
has been tested through free flight, gliding flight, flight with gust. The results show good trend and
show that the programme could be dependent as a realistic flight test programme.
Design sampling plan was and still one of most importance subjects because it give lowest cost comparing with others, time live statistical distribution should be known to give best estimators for parameters of sampling plan and get best sampling plan.
Research dell with design sampling plan when live time distribution follow Logistic distribution with () as location and shape parameters, using these information can help us getting (number of groups, sample size) associated with reject or accept the Lot
Experimental results for simulated data shows the least number of groups and sample size needs to reject or accept the Lot with certain probability of
... Show MoreEsterification reaction is most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock to study and simulate production of biodiesel. Batch esterification of oleic acid was carried out at operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 1/1 to 6/1, H2SO4 as the catalyst 1 and 5% wt of oleic acid, reaction time up to 180 min. The optimum conditions for the esterification reaction were molar ratio of ethanol/oleic acid 6/1, 5%wt H2SO4 relative to oleic acid, 70 °C, 90 min and conversion of oleic 0.92. The activation energy for the suggested model was 26625 J/mole for forward reaction and 42189 J/mole for equilibrium constant. The obtained results s
... Show MorePhotoacoustic is a unique imaging method that combines the absorption contrast of light or radio frequency waves with ultrasound resolution. When the deposition of this energy is sufficiently short, a thermo-elastic expansion takes place whereby acoustic waves are generated. These waves can be recorded and stored to construct an image. This work presents experimental procedure of laser photoacoustic two dimensional imaging to detect tumor embedded within normal tissue. The experimental work is accomplished using phantoms that are sandwiched from fish heart or blood sac (simulating a tumor) 1-14mm mean diameter embedded within chicken breast to simulate a real tissue. Nd: YAG laser of 1.064μm and 532nm wavelengths, 10ns pulse duration, 4
... Show MoreA simulated ion/electron optical transport and focusing system has been put forward to
be mounted on high voltage transmission electron microscope for in situ investigations.
The suggested system consists of three axially symmetric electrostatic lenses namely an
einzel lens, an accelerating immersion lens, and a decelerating immersion lens, in addition
to an electrostatic quadrupole doublet lens placed on the image side. The electrodes
profile of these lenses is determined from the proposed axial field distributions. The
optical properties of the whole system have been computed together with the trajectory of
the accelerated charged-particles beam along the optical axis of the system. The computed
dimensions of th