An evaluation for the performance of model pile embedded in expansive soil was investigated. An extensive testing program was planned to achieve the purpose of this research. Therefore, special manufactured system was prepared for studying the behavior of model pile having different length to diameter ratios (L/D). Two types of piles were used in this research, straight shaft and under reamed piles. The effect of model pile type, L/D ratio and number of wetting drying cycles were studied. It is observed that significant reductions in pile movement when under reamed piles were considered. A proposed design charts was presented for straight shaft and under reamed piles to estimate the length of both types of piles that is required to exert minimized uplift pressure when the soil swells.
In this study, the behavior of square helical piles models (5×5) mm2 embedded in expansive soil bed overlaying a layer of sandy soil was investigated. The sand layer 200mm thickness was compacted into four sub layers in a steel container with diameter 400mm in size. Sandy soil layer was compacted into two relative densities 40% and 80%. The bed of ثءحties 40% and 80%.The bed of o00mm in size.Sandy soil layer was compacted into two relative densities 40% and 80%.The bed of oexpansive soil 300mm thickness was compacted into six sub layers on sandy soil layer. Model tests are performed with helical pile length 350mm, 400mm and 450mm and with helix diameter 15mm and 20mm. Also, one helix and double helix were
... Show MoreGranular Pile Anchor (GPA) is one of the innovative foundation techniques, devised for mitigating heave of footing resulting from the expansive soils. This research attempts to study the heave behavior of (GPA-Foundation System) in expansive soil. Laboratory tests have been conducted on an experimental model in addition to a series of numerical modeling and analysis using the finite element package PLAXIS software. The effects of different parameters, such as (GPA) length (L) and diameter (D), footing diameter (B), expansive clay layer thickness (H) and presence of non-expansive clay are studied. The results proved the efficiency of (GPA) in reducing the heave of exp
... Show MoreIn this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively.
The experiment was conducted to evaluate and performance comparison for moldboard and disk plows in central of Iraq in 2011. Three factor were used in this study included Two types of plows included moldboard and disk plows which represented main plot , three forward speeds of the tillage was second factor included 1.85, 3.75 and 5.62 km / h which represented sup plot , and three levels of soil moisture was third factor included 21 , 18 and 14 % to determined data actual plow depth , Practical productivity, Volume of disturbed soil, Field efficiency , Slippage percentage in silt clay loam soil with depth 22 cm were studied in the experiment Split – split plot design under randomized complete block design with three replications using
... Show MoreFor the design of a deep foundation, piles are presumed to transfer the axial and lateral loads into the ground. However, the effects of the combined loads are generally ignored in engineering practice since there are uncertainties to the precise definition of soil–pile interactions. Hence, for technical discussions of the soil–pile interactions due to dynamic loads, a three-dimensional finite element model was developed to evaluate the soil pile performance based on the 1 g shaking table test. The static loads consisted of 50% of the allowable vertical pile capacity and 50% of the allowable lateral pile capacity. The dynamic loads were taken from the recorded data of the Kobe e
Gypseous soils are distributed in many regions in the world including Iraq, which cover more than (31%) of the surface area of the country. Existence of these soils, always with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of the gypsum caused by the action of water flow through soil mass. For the study, the gypseous soil was brought from Bahr Al-Najaf, Al-Najaf Governorate which is located in the middle of Iraq. The model pile was embedded in gypseous soil with 42% gypsum content. Compression axial model pile load tests have been carried out for model pile embedded in gypseous soil at initial degree of saturation of (7%) before and after soil satu
... Show MoreExpansive soil spreads in Iraq and some countries of the world. But there are many problems can be occurred to the structures that built on, so we must study the characteristics of these soils due to the problems that may be caused to these structures which built on these kinds of soil and then study the methods of treatment. The present study focuses on improving the geotechnical properties of expansive soils by treating it Metakaolin(M). Metakaolin (M) has never been used before as an improvement material for stabilizing the expansive soil . Metakaolin is a pozzolanic material. It’s obtained by calcination of kaolinite clay at temperatures from 700°C to 800°C. Kaolin chemical composition is
... Show MoreExpansive soils are recognized by their swelling potential upon wetting due to the existence of some clay minerals such as montmorillonite. An effective solution was found to avoid the danger of such soils by using piles. A single pile embedded in an elasto-plastic expansive soil has been analyzed by using one of the available software which is ABAQUS to investigate the effect of applied loads on pile’s top and investigate the effect of swelling soils on load carrying capacity of the pile. The result shows that as the pile is axially loaded at its top, the axial force along the pile gradually changes from (tension) to (compression) and the pile tends to move downward. The applied load needed to initiate pile’s settlement depend
... Show MoreThis research focuses on studying the effects of soil movement on the behavior of an existing pile driven in sandy soil. A physical model has been manufactured to investigate the effect of construction of an embankment adjacent to free head single pile driven in sand of dry unit weight of 13.5 kN/m3. The model pile of diameter (D) of 10 mm are tested under two conditions of loading: loaded axially and without load. The model piles are instrumented with strain gauges along the embedded length to measure strains resulting from the soil movement. The embankment loads are applied at distances of 2.5, 5, and 10D from the edge of the pile. The results obtained from the